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Abstract. This paper investigates the coupling between a peer-to-peer
(P2P) electricity market and a forecast market to alleviate the uncer-
tainty faced by prosumers regarding their renewable energy sources (RES)
generation. The work generalizes the analysis from Gaussian-distributed
RES production to arbitrary distributions. The P2P trading is modeled
as a generalized Nash equilibrium problem, where prosumers trade en-
ergy in a decentralized manner. Each agent has the option to purchase a
forecast on the forecast market before trading on the electricity market.
We establish conditions on arbitrary probability density functions (pdfs)
under which the prosumers have incentives to purchase forecasts on the
forecast market. Connected with the previous results, this allows us to
prove the economic efficiency of the P2P electricity market, i.e., that a
social optimum can be reached among the prosumers.

Keywords: Mechanism Design - Decentralized Electricity Market - Peer-
to-peer Market - Forecast Market

1 Introduction

Decentralization in electricity markets, driven by liberalization, the increase in
renewable energy sources (RES), and the growing role of prosumers, has given
rise to P2P energy markets, in which prosumers negotiate with each other for
energy procurement while minimizing their costs and accounting for the uncer-
tainties in RES generation. This decentralization can lead to more efficient and
flexible energy distribution [Le Cadre et al.|[2020]. However, managing the uncer-
tainties associated with RES generation remains a significant challenge [Perakis
and Roels [2008], [Nair et al.| [2014]. In traditional energy markets, uncertainties
faced by end-users are handled by larger entities such as suppliers/retailers, who
can mitigate these uncertainties by managing a large portfolio of users [Moret,

! This paper extends our previous work [Shilov et al|[2023| on the integration of
forecast markets with peer-to-peer (P2P) electricity trading by generalizing from
Gaussian to arbitrary distributions.
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et al.[[2020]. However, in decentralized electricity markets, agents must accom-
modate the uncertainty in their generation profiles caused by RES, relying on
their forecasts of future uncertain outcomes. Therefore, forecasting is crucial for
making informed decisions in such markets. This aspect has been widely stud-
ied in the literature (see e.g. [Petropoulos et al.| [2022] for a detailed overview).
The possibility to improve the forecasts needed, using external available data or
forecast mechanisms, leads to the concept of information (or data) markets Agar-
wal et al.| [2019]. Forecast markets, which aggregate and distribute information
about uncertain future events, have shown promise in improving forecast quality
Wolfers and Zitzewitz [2004], Messner and Pinson| [2019]. These markets reward
forecasters based on the accuracy of their predictions and their contribution to
improving the client’s utility Raja et al. [2023], Lambert et al.|[2008].

Previous research [Shilov et al.| [2023] introduced a novel coupling of forecast
markets with P2P electricity markets, using Gaussian distributions to model
RES generation uncertainties. This coupling allowed prosumers to purchase fore-
casts in the forecast market modeled after Lambert et al. [2008],(Raja et al.| [2023]
to improve their trading decisions in the P2P market. The P2P trading was mod-
eled as a generalized Nash equilibrium problem (GNEP) |Harker| [1991], where
prosumers’ second-stage decisions depend on their forecasts of RES generation.
This research demonstrated that the impact of forecast updates on a prosumer’s
outcome can be evaluated independently, allowing one to internalize the util-
ity caused by the forecast update. Furthermore, [Shilov et al.|[2023] illustrated
that the economic efficiency of the electricity P2P market can be achieved if
prosumers participate in the forecast market. It was shown that the coupling is
individually rational for Gaussian distribution-based forecasts, alongside intu-
ition and numerical evaluation for the general case.

This paper extends the findings of [Shilov et al.| [2023] to accommodate arbi-
trary distributions. We generalize the conditions under which market efficiency
and individual rationality are achieved when prosumers participate in the fore-
cast market. Extending the theoretical framework to arbitrary distributions, we
establish conditions under which agents have incentives to participate in the
forecast market, ensuring individual rationality. It is remarkable that, for one-
shot game, these conditions depend on the local properties of the forecasts, i.e.
on the local shape of the distributions. These findings allow us to expand the
previous results supporting the development of efficient P2P markets.

2 Model

2.1 Peer-to-Peer Electricity Market

We rely on a two-settlement electricity market design consisting of day-ahead
and balancing (real-time) markets. We assume the presence of a backup retailer
from whom the community can purchase energy both in day-ahead (hereafter,
referred to as first stage) and in real-time (hereafter, referred to as second stage).
Therefore, we fix the buying (b) and selling (s) prices for first (or day-ahead pgq)
and second (or real time p,;) stages, such that p"*® > pdab > pdas > prt:s The
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Fig. 1: Proposed framework overview: red arrows indicate pre-electricity market
clearing actions, green indicate post-clearing.

community is seen as a price-taker in the electricity market, hence making the
prices exogenous to this problem, similarly to the model considered in
2020).

Let I; C NV denote the set of neighbors of agent 4, which reflects the agents
with whom she wants to trade. We denote the trade between agent ¢ and j € I
as ¢;; (limited with upper-limit x,;), where g;; is the amount of power ¢ purchases
from (or sells to) j if ¢;; > 0 (¢;; < 0) and impose a bilateral trading reciprocity
constraint ¢;; + ¢;; = 0. Trading cost term is presented in the cost function
as Y. jer, Cijdij, Where parameters ¢;; > 0 represent (product) differentiation
prices and reflect agent i’s preferences for energy trading. Denote d; as agent
i’s demand and Ag; as agent i’s renewable energy generation (wind, solar, etc.)
which we assume to be a random variable with a CDF, F,. € [0, 00). In this work,
we do not account for a correlation between agents’ random variables while it
constitutes an important step for a further research. Then, each agent has to
make a trading decision in the first stage (day-ahead market) about acquiring
(q;ia ®) or selling (q;-i “*) energy at prices p?®? pd®* respectively. At the second
stage (real-time market), agents settle imbalances after observing the realization
of Ag; for the prices p™** (buying) and p"** (selling).

1%% stage costs 274 stage costs

: da,b da,b da,s  da,s rt,b rt,b rt,s Tt,s
min - plebglel — plesglns 4y CijQijJF]E{p 4G =P
47,97 "

JET:
st. qij +q5 =0, Vi elrl; (1la)
di=Agi+ Y aiy+ a0 =gl + " — " (1b)
JET:
i < Kijs Vj c Fi (1C)
¢i"" > 0,¢{"" > 0,4/ > 0,¢]"* >0 (1d)

Note, that the expectation of the second stage costs is taken with respect to
a distribution with CDF, F,., which represents a real distribution of Ag;. Nev-
ertheless, without full knowledge of this distribution, agent ¢ has access to a
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forecast (belief) with CDF F; about the distribution of Ag;, which she uses for
computing the solution of the problem . Detailed description and motivation
for the model can be found in [Shilov et al.|[2023].

2.2 Coupled market model

For the forecast market we adopt a model from [Raja et al.|[2023],[Lambert et al.
[2008]. As authors show in [4], this forecast market mechanism enjoys some desir-
able properties such as budget-balance, anonymity, sybilproofness, truthfulness
for the client and an individually rational (IR) for the forecast sellers, adapted
from [Lambert et al.|[2008]. Note that in our study we investigate IR of the buy-
ers of the forecasts, which is different from the latter. We refer to Raja et al.
[2023], Lambert et al.| [2008] and [Shilov et al.| [2023] for more details.

Efficiency of the Peer-to-Peer Market Optimal procurement quantities for
the agents we derived in |Shilov et al.| [2023] by solving problem as a variant
of stochastic inventory management problem complicated by the peer-to-peer
trading. Below we provide some results from [Shilov et al| [2023] concerning
the solution and efficiency of the peer-to-peer market that we will use later for
the discussion on individual rationality. First, denote residual after first-stage
decisions as r; := d; — ¢7“" + ¢%** — > jer, %ij and note that it is non-negative.
We derive the closed-form expression of the optimal procurement strategy in
the presence of day-ahead and real-time contracts in a market with random

renewable generation is

Theorem 1 (Shilov et al.| [2023]). The residual r; of agent i after the day-
ahead market is given by

da,b rt,s da,b
da,b da,: Z -1 (P =P 7 Ty
qia _qia,s+ Qij:di_Fi 1( 1 )

rt,b _ rt,s
<7 e 2
d 3
_ 1 pda,s _prt,s 4 uiu,a B 1 /Cij _prt,s + Cij + 5”
=d; = I b t =d; — I b t :
pr,ipr,s pT,,pT,S
More precisely,
da,b __ . rt,s da,s __ ,rt,s
T’i:Fil(pitb pt ) or ri:F?l(pitb pt ) (3)
pr,_pr,s pr, _pr,s

if agent i purchases (or sells) electricity on the first stage.

The result above expresses the agents’ decision on the day-ahead market in
terms of residuals r;, i.e. the quantities representing the additional purchases
that each agent needs to make to balance the uncertainty of the supply after
observing the realization of the renewable generation Ag;. While not providing

C. . . . . da,b _s,da s
the explicit expressions for the decision variables ¢; ", ¢,""", ¢i;, it is useful for
further considerations. When designing market rules, it is important to choose
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an equilibrium with desirable properties from a set of equilibria (possibly infi-
nite). In our analysis we rely on Generalized Nash Equilibria and its refinement,
Variational Equilibria (VE) as discussed in [Kulkarni and Shanbhag| [2012].

Definition 1. A Generalized Nash Equilibrium (GNE) of the game defined by
the problem (1)) with coupling constraints, is a vector x; := (¢, ¢, q;) that
solves problem or, equivalently, a vector x; := (qf“,q{t,qi) such that x; :=
(qd, g, q;) solve the system KKT; for each i.

Definition 2. A Variational Equilibrium (VE) of the game defined by the maxi-
mization problems with coupling constraints, is a GNE of this game such that,
in addition, the Lagrangian multipliers (;; associated to the coupling constraints
¢ij + g5 = 0 are equal, i.e.:

Gj = Cji, YieEN,VjeT; (4)

By duality theory, (;; for i € N,Vj € I} can be interpreted as bilateral energy
trading prices|Le Cadre et al.|[2020]. In general, ¢;; might not be aligned with ¢j;,
thus leading to non-symmetric energy trading prices between couple of agents.
Relying on VE as solution concepts enforces a natural symmetry in the bilateral
energy price valuations |Le Cadre et al.|[2020]. The conditions on VE existence
are proved in [Shilov et al.| [2023|, where we also demostrate that the impact of
the forecast update on the prosumer’s outcome on the electricity market can be
evaluated independently of the other prosumers’ forecasts. Thus, it allows us to
endogenize the utility of prosumers brought by the forecast update, which has
been traditionally assumed as an exogenous factor in the literature on forecast
models Raja et al|[2023|, Lambert et al. [2008]. It was demonstrated that the
efficiency of the VE of the electricity peer-to-peer market can be achieved if the
prosumers participate in the forecast market, i.e. social optima can be achieved
if the Market Operator has access to prosumers’ forecasts.

Theorem 2 (Shilov et al.| [2023]). Total cost of agent i depends only on the
parameters of agent i. It means that forecast market operator can compute utility
change of agent © without information from the other agents.

Theorem 3 (Shilov et al.| [2023]). If all the agents report their forecasts to
the Market Operator (participate in the forecast market), then the VE of
coincides with the set of social welfare optima.

While being a strong assumption, it is mitigated by the fact that we establish
in the next section, more precisely, individual rationality of the coupling between
forecast market and peer-to-peer electricity market. Comparing to [Shilov et al.
[2023], in which only the Gaussian distributions were considered, we show that
under mild conditions for arbitrary distributions, agents benefit from purchasing
the forecasts, thus, they have incentive for participation in the forecast market.
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2.3 Individual Rationality

From we obtain that r; = Fifl(%)7 thus, bilateral trading cost
is given by I} = ((j + ¢ij) >_jer, %ij- From KKT conditions we have that
Cij + cij = ¢; for each j € I3, where ¢; is some constant specific for each agent
with p9e® < ¢; < p@?t. Then, from we obtain that either ¢; is equal to p®?,
if agent i buys energy from the backup retailer, or to p?®* otherwise. It allows
us to finally write expressions for the total cost imposed on the agent i. First,
consider the case when ¢ buys energy from backup retailer on the day-ahead
market

Hitotal _ pda,bq;ia,b +pda,b Z i + Hisecond

JET

da,b _
=ple? [di ~F! (%
prib —prt:

()

rt,s d
secon
)i| + H’i )
where Hisecond is given by
1

meeond = pribp B (ry) + p™ 51 (1 — Fr(ry))
2

ot / Agifo(Ags)dAg; — p / Agifr (Agi)dAg,,
0 T

where F,. (f,) denotes CDF (PDF) of a real distribution of Ag;. It means that
Hf"ml gives an expected cost of agent i who takes r; as a first stage decision (r;
denotes residual after the first stage). Considering the first part of the expression:

prt’briFr(Ti) _’_prt,sri(l _ Fr(rz)) _ Ti(prt’b _ prt,s)Fr(ri) +p7-t,sri

The second part can be expressed as follows, where the expectation with respect
to the real distribution is denoted as E,.[-]:

prib / Agi fr(Agi)dAg; + p™* / Agi fr(Agi)dAg;
0 Ti

= p "B, [Agi| Agi < ri]Pr(Agi < 1) + p R [Agi| Agi > i]Pr(Agi > 1i)

= p""E,[Agi| Agi < 7] F(ri) + p K, [Agi| Agi > ri](1 — Fro(r:))

=p"E,[Agi] — (p* — p"*)E,[Agi| Agi > 1i](1 — Fi(r))

Summing it all together:

da,b[di o Ti] + Ti(prt’b o prt’S)Fr(ﬁ) +prt,sri o p”’bEr[Agi]

H;otal =p
+ (prt’b — K, [Agi|Agi > ri](1 — Fo(r2)),

(6)

which gives us expected cost of an agent 1.
Expression @ allows us to consider the effects of the forecast market on
the P2P market in an expectation with respect to the real distribution of Ag;.
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First, note that CDF F.(x) and its PDF f,(x) are defined on = € [0,00). The
first question to answer (and to show the expected rewards of the sellers on the
forecast market) is the definition of order between distributions. Naturally, we
would like to show that E,[IT}'*] < E,[ITf°'*] if distribution Fj is "better"
than F;. Intuitively, for one shot game it should compare two distributions by
the amount of probability mass concentrated around the realization of a random
variable Ag;. It provide us a hint that the comparison should be made by con-
ditioning the distance between distributions. The question on how to choose the
metrics is non-trivial as shown below.

Consider an agent ¢ who has an initial forecast about the distribution of Ag;
with CDF F; and a ’better’ forecast with PDF E. Then, we want to show that

E, (71171 < B, 17070 7)

da,b_ rt,

Now, fix prices p™® > pdab > pdas > prtss and denote p := ZT ~. Assume

Th_pri.s

that agent ¢ buys energy on the day-ahead market if she uses F; or F, or F,
(this can be expressed as F; *(p), F; " *(p), F='(p) < d;). Situation in which i
sells energy on the day-ahead market is considered similarly. Moreover, denote
7= F7Y(p) and 7; == F, ' (p).

Denote as IT¢°*% the cost obtained by the agent i associated with the decision
r; = F71(p), taken when she knows the real distribution F).. Subtracting it from

both sides of , and using @ we write for the right side of the inequality
Sy = p" O — v 4 p S s = {4 (P = P i Fr (i) — ] Fp(r])]

+ (™ - p”’s)[/oo afr(x)de — /OO o fy(z)da]

. s
T Ti

with the left side (S)) written in the same way but with 7; instead of r;. Now,
dividing both sides by (p"** — p™*), we can write S, (or S; if we use F}) as

Sy = plFHp) = FTH ()] + [FH () B (FH (p) = B () Fr (B (p)]
+ [/ xfr(x)dx —/ zfy(x)dx]

F (p) F(p)
. . F7 2 (p)
= PR o) -+ | L, e
i P

Integrating by parts gives

Sr = F Y (p)[F-(F ' (p)) — pl + F o) Fr(FH(p)
— F Y p)F.(F Y (p)) — /FT (p)F (x)dx = /FT 1(p)( — Fp(x))dx
R ) F7H(p) re

Thus, we want to prove that

F o (p) F7(p)
[ e-Riss [ - B ®)

F;l(l)) Fiil(p)
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Assume now that for given p,

[E7H o) = F N0 < 1F o) = F (o) (9)

which does not immediately guarantee that holds without additional assump-
tions on F, in the neighbourhood of F.=1(p). Next we discuss the conditions on
the distributions and p such that (7)) holds. First, note that p = F,.(F~!(p)), thus,
inequality clearly holds when F; *(p) < F;l(p) < E7Y(p) or when F; *(p) >
E7Yp) > F7'(p). We next assume that F'(p) < F'(p) < FY(p), while

the opposite case can be considered similarly. In this case with the change of
variables we can rewrite as

, ) Fo(F7 ()
[ - e | P (0) - F7 @)lde (10)
Fr(F;7 " (p) p

in which the left part is upper-bounded by f;(ﬁ__l(p)) [FY(p)— F‘—l(p)} and the
-1 K
F.(F; (P))[Ffl(p) —Fﬁl(p)].

(3 T

left part is lower-bounded by fp

Theorem 4. Forecast’s update from F; to F; decreases agent i’s costs (i.e. in-
equality (7)) holds) if

1 E7 N p) = o) < [F7Hp) = B2 (o)

2. l;:‘; fac fr(x)dz < fbc fr(x)dz,.

where a == FY(p),b:= F=Y(p),c:= F, Y(p) and F, denotes real CDF of Ag;.

?

Proof. Proof follows from the derivations above. Using the bounds in and

denoting a := E; (p),b:= F=(p),c := F; ' (p) we can write it as

(b= a)[F(b) — Fr(a)] < (¢ = ) [F(c) — Fi(b)] (11)
Which can then be transformed into

=t [ nwie < [ pw (12)

where coefficient K := Zé:g € (0, %] This, combined with @[) gives exactly the

conditions of the theorem. Note that the case with F; '(p) < F!(p) < Fi_l(p)
is considered similarly. O

Taking the worst case with K = %, we obtain that the condition for
holds if F'(xz) > 0 for € [a, ] which represents a sufficient condition for (7))
to hold. In the general case, condition defines the relationship between the
quantiles of the forecasts and CDF of a real distirbution of Ag;. This condition
is illustrated in Figure 2a} blue area should be less than the orange one.
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Fig. 2: Conditions for general and Gaussian distirbution

FEzxzample 1. To illustrate the implications of our result we consider the following
example: let F., F; and F; represent CDFs of Gaussian distributions with means
Ly i and fi; respectively, where fi; < p, < p; and p, — fi; < p; — p. Assume
that the variance is the same for all the distributions. For such shifted Gaussian
distributions, condition reduces to the following upper bound:

i = fhr o i = fe | g fli = e i = e
p < G(p) = —@ +P (p)) — —@ + o7 (p)),
() = MLt (7)) - Lo (v)

which can be easily evaluated numerically. Figure 2b] demonstrates the values
of G(p) — p for different u, while p; and f[i; are fixed and are equal to 5 and
2 respectively. The closer fi; to w, comparing to p; — ., the bigger admissible
values of p are. For example, when p, = 3 (as in Figure [2a]), condition (12))
is satisfied with p < 0.97453. As demonstrated in |Shilov et al.| [2023], it is
possible to obtain tighter bounds with certain conditions on the distributions,
while theorem [ provides conditions for arbitrary pdfs.

3 Conclusion

In this work, we formulated a coupling model between a P2P market and a
forecast market. We addressed existence of incentives for the prosumers to par-
ticipate in the forecast market. In addition, we proved the conditions on the
"distance’ between the distributions purchase of the forecast leads to decreased
costs. This is a major result which highlights that it is profitable for the pro-
sumers to purchase forecasts and that leads to reaching a social optimum of the
peer-to-peer market.

This paper contributes to a novel direction of exploring the connection be-
tween electricity and forecast markets. One of the promising directions for further
research is to apply the model to real-time markets involving dynamic prices and
uncertainty coming from high share of renewable generation. Continuing in these
directions, we can move towards the most efficient way for the forecast markets
to interact with electricity markets with renewable generation.
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