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Abstract. Generative artificial intelligence (Generative AI), and in par-
ticular Large Language Models (LLMs), has gained significant popularity
among researchers and industrial communities, paving the way for the
integration of LLMs in different domains, such as robotics, telecom, and
healthcare. In this paper, we study the intersection of game theory and
generative artificial intelligence, focusing on the capabilities of LLMs to
find the Nash equilibrium in games with a mixed strategy Nash equi-
librium and no pure strategy Nash equilibrium (that we denote mixed
strategy Nash equilibrium games). The study reveals a significant en-
hancement in the performance of LLMs when they are equipped with
the possibility to run code and are provided with a specific prompt to
incentivize them to do so. However, our research also highlights the lim-
itations of LLMs when the randomization strategy of the game is not
easy to deduce. It is evident that while LLMs exhibit remarkable profi-
ciency in well-known standard games, their performance dwindles when
faced with slight modifications of the same games. This paper aims to
contribute to the growing body of knowledge on the intersection of game
theory and generative artificial intelligence while providing valuable in-
sights into LLMs strengths and weaknesses. It also underscores the need
for further research to overcome the limitations of LLMs, particularly in
dealing with even slightly more complex scenarios, to harness their full
potential.
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1 Introduction

Generative artificial intelligence (Generative AI) has emerged as a dynamic field
within AI, empowering machines with algorithms that enable them to generate
unique content, including music, images, code, text, and human-like conversa-
tions. One notable example is Large Language Models (LLMs), a specific type
of Generative AI model that undergoes training on extensive unlabeled textual
datasets. LLMs have demonstrated remarkable abilities in various domains, in-
cluding question answering, translation, summarization, code generation, etc. [7].
Generative AI, and in particular LLMs have gained significant popularity among
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researchers and industrial communities, paving the way for integrating LLMs in
different domains, such as robotics [8], telecom [9], and healthcare [5].

If we take a step back, we notice that in recent years the rapid advancement
of artificial intelligence and machine learning technologies has led to delegating
an increasing number of tasks to machines. From automated customer service
chatbots to autonomous vehicles, these intelligent systems have demonstrated
remarkable capabilities in handling complex tasks and augmenting human pro-
ductivity. However, as our reliance on those machines grows, it becomes crucial
to comprehend the extent of what we are delegating. LLMs have been employed
in various domains, however amidst their impressive capabilities, it is essential
to acknowledge the potential drawbacks and limitations they possess.

One of the known drawbacks of LLMs is their capacity to randomize (see
for example [4]), therefore we should approach with a certain level of skepticism
their performance on tasks when randomization is a critical factor. In the realm
of game theory, randomization plays a pervasive role. A prime illustration of this
phenomenon is found in the notion of a mixed strategy Nash equilibrium. This
concept entails a strategy wherein a player does not consistently opt for the same
action but rather elects each action with a specific probability. This element of
uncertainty adds depth and complexity to the strategic decision-making process,
as players strategically allocate their choices based on the likelihood of favorable
outcomes.

In this work, we focus our attention on the capabilities of LLMs to find the
Nash equilibrium in games with a mixed strategy Nash equilibrium and no pure
strategy Nash equilibrium (that throughout this work we denote mixed strategy
Nash equilibrium games). For other works, studying LLMs playing games, see
for example [3] and [2]. In particular, we study two classic mixed strategy Nash
equilibrium games: matching pennies and rock, paper, scissors, which we describe
in the following sections. These simple yet universally recognized games provide
an ideal platform to evaluate the LLM capabilities in a controlled environment.

To perform our experiments, we used as LLM the Mistral v0.3 model and the
quantized Hermes-2-Pro-Llama-3-8B, an advanced language model that lever-
ages quantization to improve computational efficiency without significantly com-
promising performance. We chose this open weights models to ensure that our ex-
periments are designed and conducted in a manner that allows other researchers
to replicate them accurately. This commitment to reproducibility not only vali-
dates our findings but also facilitates further research in this area. Our code can
be found on https://github.com/alonsosilvaallende/LLMs_Playing_MSNE_
Games. Another reason to use these models is that one of the key aspects we use
in this paper is the model’s function-calling capabilities. This feature allows the
model to call functions to answer a user’s question. In this manuscript, we only
present the results for the Mistral v0.3 model (for Hermes-2-Pro-Llama-3-8B the
results are similar and can be found in our code).

https://github.com/alonsosilvaallende/LLMs_Playing_MSNE_Games
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2 Matching Pennies game

2.1 Problem description

Matching Pennies game is a classic game. It is a two-player zero-sum game,
meaning that any gain by one player is exactly offset by the loss of the other
player. The game works as follows:

• Each player has two possible actions: to play Heads or Tails.
• Both players reveal their choices simultaneously.
• If both choices match (both Heads or both Tails), Player 1 wins. If the choices

do not match (one Heads and one Tails), Player 2 wins.

The payoff matrix of the Matching Pennies game is given by Table 1.

Table 1. Payoff matrix of the Matching Pennies game

Heads Tails
Heads (1,-1) (-1,1)
Tails (-1,1) (1,-1)

In the Matching Pennies game, the mixed strategy Nash equilibrium occurs
when each player chooses Heads or Tails with equal probability (50% chance of
Heads and 50% chance of Tails). This is because, given that the other player is
playing a 50-50 strategy, each player’s expected payoff is the same regardless of
their own strategy. Therefore, they have no incentive to deviate from the 50-50
strategy, which makes it a Nash equilibrium.

2.2 Game-playing capabilities of the LLM based purely on its
pre-existing knowledge

In this subsection, we investigate the capabilities of the LLM to play the game.
First, we assess the LLM’s ability to recognize the game to see if it is included
in its pre-existing knowledge. To do this we use the following prompt:

PROMPT: What is the mixed strategy Nash equilibrium for the matching
pennies game?

The response generated by the LLM indicates that indeed the Nash Equilib-
rium of this game is included in its pre-existing knowledge:

ANSWER: The Matching Pennies game is a two-player, zero-sum game where
each player secretly chooses either heads (H) or tails (T). If both players
choose the same option, the player who chose first wins the coin, and if they
choose differently, the second player wins.

In a Nash equilibrium, neither player has an incentive to deviate from
their strategy if they believe the other player will stick to theirs. However,
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in the Matching Pennies game, there is no pure strategy Nash equilibrium
because both players would have an incentive to deviate from their strategies
if they knew what the other player was going to do.

Instead, the Matching Pennies game has a mixed strategy Nash equilib-
rium. In this case, each player should randomly choose heads or tails with
equal probability (0.5). This way, neither player can gain an advantage by
deviating from their random choice, as they have no information about the
other player’s decision.

So, the mixed strategy Nash equilibrium for the Matching Pennies game
is each player choosing H and T with a 50% probability.

We assess the model’s ability to play the game of matching pennies without
any additional instruction. This evaluation is significant as it tests the model’s
capacity to comprehend and follow the game’s rules based purely on its pre-
existing knowledge. To do this we use the following prompt:

PROMPT: Respond to the following text with one of the following answers:
‘heads’, ‘tails’. Provide your response in JSON format containing a single
key ‘answer’. Text: Let’s play matching pennies. I have made my choice.
Now, you should make your choice. What do you play?

The idea of using JSON format with a single key is to make the postprocessing
of the LLM’s answers easier (we just need to extract the answer from the JSON
instead of having to search within a potentially long answer which was the action
played by the LLM). This idea was taken from the Scikit-LLM library [1].

We tested 1000 different seeds. The probabilities of obtaining Heads or Tails
are given by Table 2.

Table 2. Probabilities of obtaining Heads or Tails in the Matching Pennies game
without any additional instruction.

pHeads 77.9%
pTails 22.1%

We also tested a different prompt explicitly telling the LLM to play according
to the mixed strategy Nash equilibrium of the game.

PROMPT: Respond to the following text with one of the following answers:
‘heads’, ‘tails’. Provide your response in JSON format containing a single
key ‘answer’. Text: Let’s play matching pennies. I have made my choice.
Now, you should make your choice. Play according to the mixed strategy
Nash equilibrium. What do you play?

We tested 1000 different seeds. The probabilities of obtaining Heads or Tails are
given by Table 3.
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Table 3. Probabilities of obtaining Heads or Tails in the Matching Pennies game with
explicit prompt.

pHeads 81.6%
pTails 18.4%

The responses generated by the LLM indicate that despite both the Matching
Pennies game and its mixed strategy Nash equilibrium being included in its pre-
existing knowledge, the LLM is unable to play according to this strategy.

2.3 Let LLMs run code

In this subsection, we allow the LLM the possibility to run code. To encourage
the LLM to use this possibility we add the following text to the prompt:

Choose your choice first in valid Python code.

Therefore, we use the following prompt:

PROMPT: Let’s play matching pennies. I have made my choice. Now, you
should make your choice. Choose your choice first in valid Python code.

The response generated by the LLM is the following:

import random
choice = random.randint(0,1)
print("Heads" if choice == 0 else "Tails")

This response indicates that despite the LLM being unable to play according
to the mixed strategy Nash equilibrium, it does not have a problem generating
the code to play the game according to the mixed strategy Nash equilibrium.
Therefore, if we allow the LLM to run the code it generated, it indeed plays the
mixed strategy Nash equilibrium.

2.4 Modified Matching Pennies game

In this subsection, we consider a modification of the Matching Pennies (that
we call the Modified Matching Pennies game) with the payoff matrix given by
Table 4.

Table 4. Payoff matrix of the Modified Matching Pennies game

Heads Tails
Heads (7,-1) (-1,1)
Tails (-1,1) (1,-1)
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In this Modified Matching Pennies game, the only modification is that if both
players choose Heads, the first player receives a payoff of 7 instead of 1 in the
original matching pennies game. All the other payoffs are the same.

The mixed strategy Nash equilibrium of the Modified Matching Pennies [6]
is given by:

• Player 1 plays both options (Heads and Tails) with equal probability 1/2.
• Player 2 plays Heads with probability 1/5 and Tails with probability 4/5.

To make the LLM play the Modified Matching Pennies Game, we need to
be more explicit on the payoff matrix since the LLM does not know it. We also
need to add to the prompt the phrase "Choose your choice first in valid Python
code." to encourage it to use this possibility. Therefore, we use the following
prompt:

PROMPT: Let’s play a modification of the Matching Pennies game. More
precisely, each of us has two possible actions: to play Heads or Tails. We
both reveal our choices simultaneously. If both of us play Heads, then I
gain 7 points and you lose 1 point, if both of us play Tails, then I gain 1
point and you lose 1 point. If our choices do not match (one Heads and one
Tails), you gain 1 point and I lose 1 point. I have made my choice. Now,
you should make your choice. What do you play? Choose your choice first
in valid Python code.

The response generated by the LLM is the following:

import random
choice = "Heads" if random.randint(0,1) == 0 else "Tails"
print("I have played", choice)

This response is the same as the unmodified classic Matching Pennies game.
The LLM is unable to find the randomization needed to play the mixed strategy
Nash equilibrium of this slightly modified game.

3 Rock, Paper, Scissors game

3.1 Problem description

The classic game of Rock, Paper, Scissors (RPS) is also a two-player zero-sum
game. The game works as follows:

• Each player has three possible actions: Rock, Paper, or Scissors.
• Both players reveal their choices simultaneously.
• Rock crushes Scissors, Scissors cuts Paper, and Paper covers Rock.

The payoff matrix of the original Rock, Paper, Scissors game is given by
Table 5. Given that payoff matrix, it is well-known that the mixed strategy
Nash equilibrium for this game is for each player to play with equal probability
of 1/3 each of the 3 possible actions.
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Table 5. Payoff matrix of the Rock, Paper, Scissors game

Rock Paper Scissors
Rock (0, 0) (-1, 1) (1, -1)
Paper (1, -1) (0, 0) (-1, 1)

Scissors (-1, 1) (1, -1) (0, 0)

3.2 Game-playing capabilities of the LLM based purely on its
pre-existing knowledge

In this subsection, we investigate the capabilities of the LLM to play the game.
First, we assess the LLM’s ability to recognize the game to see if it is included
in its pre-existing knowledge. To do this we use the following prompt:

PROMPT: What’s the Mixed Strategy Nash equilibrium for the rock, paper,
scissors game?

The response generated by the LLM indicates that indeed the Nash Equilib-
rium of this game is included in its pre-existing knowledge:

ANSWER: In a one-shot Rock, Paper, Scissors (RPS) game between two play-
ers, there is no pure strategy Nash equilibrium because if both players choose
the same strategy, they can be beaten by a deviation to another strategy.
However, in repeated games with perfect information and no bounds on the
number of repetitions, a mixed strategy Nash equilibrium can exist.

In this case, each player randomly chooses their move (rock, paper, scis-
sors) with probabilities that make it unprofitable for either player to deviate
from their chosen strategy. One possible set of such probabilities is:

- Player 1 plays rock with a probability of 1/3, paper with a probability
of 1/3, and scissors with a probability of 1/3. - Player 2 plays rock with
a probability of 1/3, paper with a probability of 1/3, and scissors with a
probability of 1/3.

In this mixed strategy Nash equilibrium, neither player has an incentive
to deviate from their chosen strategy because the expected payoff for each
move is the same against every possible move of the other player. This
results in a draw on average, as each player wins approximately one-third
of the games against the other player’s strategies.

We assess the model’s ability to play the rock, paper, scissors game without
any additional instruction. This evaluation is significant as it tests the model’s
capacity to comprehend and follow the game’s rules based purely on its pre-
existing knowledge. To do this we use the following prompt:

PROMPT: Let’s play rock, paper, scissors. I have made my choice. Now, you
should make your choice. What do you play?

We tested 1000 different seeds. The probabilities of obtaining rock, paper or
scissors are given by Table 6.
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Table 6. Probabilities of obtaining Rock, Paper, or Scissors without any additional
instruction

pRock 51.6%
pPaper 0.0%
pScissors 48.4%

We also tested a different prompt explicitly telling the LLM to play according
to the mixed strategy Nash equilibrium of the game:

PROMPT: Let’s play rock, paper, scissors. I have made my choice. Now,
you should make your choice. Play according to the mixed strategy Nash
equilibrium. What do you play?

We tested 1000 different seeds. The probabilities of obtaining rock, paper, or
scissors are given by Table 7.

Table 7. Probabilities of obtaining Rock, Paper, or Scissors without any additional
instruction

pRock 6.7%
pPaper 18.7%
pScissors 74.6%

The responses generated by the LLM indicate that despite both the matching
pennies game and its mixed strategy Nash equilibrium being included in its pre-
existing knowledge, the LLM is unable to play according to this strategy.

3.3 Let LLMs run code

In this subsection, similar to the Matching Pennies game, we allow the LLM the
possibility to run code. To encourage the LLM to use this possibility, we use the
following prompt:

PROMPT: Let’s play rock, paper, scissors. I have made my choice. Now, you
should make your choice. Choose your choice first in code.

The response generated by the LLM is the following:

import random
choice = ["rock", "paper", "scissors"]
computer_choice = random.choice(choice)
user_input = input("Enter your choice (rock, paper or scissors): ")
if user_input == computer_choice:
print("It’s a tie!")

elif (user_input == "rock" and computer_choice == "scissors") or \
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(user_input == "paper" and computer_choice == "rock") or \
(user_input == "scissors" and computer_choice == "paper"):
print("You win!")

else:
print("Computer wins!")

Similar to the case of the Matching Pennies game, this response indicates
that despite the LLM being unable to play according to the mixed strategy
Nash equilibrium, it does not have a problem generating the code to play the
game according to the mixed strategy Nash equilibrium.

3.4 Modified Rock, Paper, Scissors Game

In this subsection, we consider a modification of the Rock, Paper, Scissors game
(that we call the Modified Rock, Paper, Scissors game) with the payoff matrix
given by Table 8.

Table 8. Payoff matrix of the Modified Rock, Paper, Scissors game

Rock Paper Scissors
Rock (0, 0) (-2, 2) (1, -1)
Paper (2, -2) (0, 0) (-1, 1)

Scissors (-1, 1) (1, -1) (0, 0)

To make the LLM play the Modified Rock, Paper, Scissors Game, we need to
be more explicit on the payoff matrix since the LLM does not know it. We also
need to add to the prompt the phrase "Choose your choice first in valid Python
code." to encourage it to use this possibility. Therefore, we use the following
prompt:

PROMPT: Let’s play once a modification of rock, paper, scissors. More pre-
cisely, if I play rock and you play scissors, then I gain 1 dollar and you lose
1 dollar, if I play scissors and you play paper, then I gain 1 dollar and you
lose 1 dollar, however, if I play paper and you play rock then I gain 2 dollars
and you lose 2 dollars. The same holds by changing our roles. I have made
my choice. Now, you should make your choice. What do you play? Choose
your choice first in valid Python code.

The mixed strategy Nash equilibrium of the Modified Rock, Paper, Scissors
game [6] is given by Table 9.

The response generated by the LLM is the following:

import random
choice = [’rock’, ’paper’, ’scissors’]
user_choice = input(’Enter your choice (rock, paper or scissors): ’)
computer_choice = choice[random.randint(0, 2)]
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Table 9. Nash equilibrium strategy for the Modified Rock, Paper, Scissors game with
payoff matrix given by Table 8

pRock 1/4
pPaper 1/4
pScissors 1/2

if user_choice == computer_choice:
print(’It is a tie!’)

elif (user_choice == ’rock’ and computer_choice == ’scissors’) or \
(user_choice == ’scissors’ and computer_choice == ’paper’) or \
(user_choice == ’paper’ and computer_choice == ’rock’):

print(’You lose 1 dollar. The computer plays’, computer_choice)
else:
print(’You win 1 dollar. The computer plays’, computer_choice)

This response is similar to the response of the unmodified classic Rock, Paper,
Scissors game. The LLM is unable to find the randomization needed to play
the mixed strategy Nash equilibrium of this slightly modified game (nor the
modification of the payments).

4 Conclusions

Our study on the intersection of game theory and generative artificial intelli-
gence, particularly focusing on Large Language Models (LLMs), has provided
valuable insights into the capabilities and limitations of LLMs in identifying
Nash equilibria in mixed strategy games. Our findings demonstrate that LLMs
can significantly enhance their performance when they are enabled to run code
and are given specific prompts that encourage this functionality. This capability
allows LLMs to perform well in standard game scenarios where the strategies
are well-defined and well-documented.

However, the study also highlights critical limitations in the adaptability of
LLMs when confronted with games that involve complex randomization strate-
gies or slight modifications from standard scenarios. In such cases, the perfor-
mance of LLMs noticeably declines, suggesting that while LLMs are proficient
in handling familiar and straightforward game dynamics, their effectiveness is
reduced in more complex or altered game setups.

This research underscores the necessity for ongoing development in the field of
generative AI to enhance the robustness and flexibility of LLMs. Future research
should focus on improving the ability of LLMs to handle a broader array of game
types, particularly those that deviate from standard forms, to fully leverage the
potential of LLMs in practical and theoretical applications. Additionally, further
studies are required to explore the integration of advanced machine learning
techniques that could aid LLMs in better understanding and adapting to complex
game strategies.
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Overall, our work contributes to the expanding knowledge base at the in-
tersection of game theory and artificial intelligence and opens up new avenues
for research in enhancing the capabilities of generative AI systems in complex
decision-making scenarios.
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