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Abstract. Directed Acyclic Graphs (DAGs) are an appealing design
for Distributed Ledger (DL) architectures. Specifically, DAG-based DLs
offer valuable benefits compared to blockchains, such as improved scal-
ability, lightweight consensus mechanisms and lower transaction costs.
However, due to the communication delays and distributed nature of the
DL, some transactions may remain unapproved. Previous works have
provided bounds on the expected number of unapproved transactions
when the transactions selection strategy is uniform. Still, a transaction
should be preferably validated by multiple nodes so as to increase the
trust in the ledger. In this paper, we introduce a bound on the expected
number of transactions that are approved by at most one node. For this
purpose, we define a new stochastic model based on stochastic sets, which
captures the evolution of DAG-based DL. The proposed model enables
us to establish a quadratic bound on the drift in the number of tips. We
then demonstrate that the expected volume of transactions validated by
at most one node is bounded. These results indicate that the occurrence
of large volume of transactions validated by at most one node happens
with sufficiently low probability.

Keywords: Distributed ledger · DAG-based distributed ledger · Stochas-
tic Process.

1 Introduction

Distributed ledger technology (DLT) is a decentralized peer-to-peer digital sys-
tem that records simultaneously transactions between multiples parties spread
across different locations. By relying on advanced cryptography and consensus
mechanisms, DLT enables participants to maintain a consistent and immutable
ledger. This eliminates the need for a centralized data store and central au-
thority, unlike traditional databases. While DLT (i.e., blockchain) has showed
significant potential to support financial transactions (and in particular Bitcoin
crypto-currency), broader and more mainstream adoption is likely to follow if
scalability issue (i.e., difficulties of handling large volume of transactions quickly
and efficiently) is resolved. In this regards, DLTs based on a Directed Acyclic
Graph (DAG) data structure have been introduced. DAG consists of a number
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vertices (i.e., transactions) connected by directed edges such that there is no
cycle (i.e., directed path connecting a vertex to itself). DLT evolves over time as
follows: a node that creates a new transaction is required to validate (hereafter
also referred to as approve or verify) two previous transactions using a transac-
tion selection mechanism introduced in [10]. Few selection strategies have been
introduced, among which the random selection algorithm, wherein transactions
are randomly validated (for example uniformly, using Markov chain Monte Carlo
algorithm [3]). There is a growing trend among companies and startups, such
as IOTA [9], to integrate DAG-based DLT into their business operations. A key
advantage of DAG-based DLTs over blockchains is their ability to connect to
any current vertex in the graph, allowing new transactions (i.e., messages) to be
added to the ledger more efficiently and rapidly. Although there are undeniable
benefits compared to classical blockchain, DAG-based DLTs have drawbacks. In
particular, due to the distributed and asynchronous nature of the DLT, the ver-
ification process induces latency and inconsistencies: for instance, a node may
not consider the same DL state, may believe that a validated transaction is not
yet validated and may be unaware of the existence of a new transaction. As a
consequence, the ledger performance could be significantly affected in the sense
that an increased number of transactions remains unapproved. This raises the
question of whether the number of unapproved transactions, which is called a tip
in the literature, remains bounded. In this regards, several works [2, 11, 9, 12, 5]
have studied the stability of DAG-based DLs, providing bounds on the expected
number of tips (i.e. transactions that have not been approved by any node)
and the expected validation time. In this paper, we assume that every incoming
transaction needs to be approved (at least) two times because nodes are more
likely to trust a DL in which transactions are confirmed by multiple independent
nodes. Two scenarios are possible: either a node validates a transaction that has
never been validated before, or it validates a transaction that has already been
validated by another (single) node. For this purpose, we choose to use a multi-
nomial distribution for the tip selection mechanism. This is especially important
in financial systems and applications that require a high degree of confidence. In
order to estimate the volume of transactions that are insufficiently verified, i.e.,
not approved by any node or approved by a single node, we provide a bound
on the expected number of transactions that have been approved by at most
one node, considering the situation in which communication delays are bounded
and heterogeneous. In the following, we introduce a new definition of a tip that
corresponds to a transaction validated by at most one node. We propose a new
stochastic model based on stochastic sets to study the evolution of the number
of tips. Then, we determine a negative upper bound on the drift of the number
of tips, which allows us to conclude that its expected number is bounded over
time.

1.1 Related work

Our review of the literature is focused on studying the stability and perfor-
mance of DAG-based distributed ledgers (DL). The initial mathematical model
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[9] of DAG-based ledgers assumes that a central node manages the ledger, while
other nodes access it by requesting information to the central node. The com-
munication delays caused by the interaction between the central server and the
other nodes are assumed to be constant. Another assumption is that the num-
ber of unapproved transactions remains close to its average value at a constant
rate. Based on the same model [9] and on the same conjuncture, some empirical
simulation-based studies [4, 6] evaluate the performance of DAG-based ledgers.
In [8], The authors assume that multiple distinct message categories exist, which
lead to varying processing times and consequently different reception delays. The
authors prove a mathematical result under different delays, which arises from
various classes of messages. In [1], the authors assume that the strategy for
selecting unapproved messages is not uniform and prove that the number of
unapproved messages converges to a partial differential equation. In [12], us-
ing Markov chain, the authors propose modeling the evolution of DAG-based
distributed ledgers with homogeneous delays among nodes. Our paper extends
the model proposed by [2], which assumes heterogeneous delays and introduces a
mathematical framework to prove that the expected number of unapproved mes-
sages is bounded. Most of these works consider a uniform tip selection algorithm
and focus on the stability and performance of DAG-based DL, which are eval-
uated based on the evolution of unapproved messages. Among all these works,
none study the stability properties considering the evolution of the number of
transactions approved by at most one node in the presence of heterogeneous
delays with a non-uniform selection strategy.

2 Mathematical model

For I ∈ N∗, let I = {1, ..., I} be the set of nodes in the DL. We assume that
the state of the DL progresses at discrete time steps n ∈ N. For i ∈ I, let Ci

n

denote the set of new messages sent by node i at time n. Each node i generates
ri new messages at any time n. We denote V i,0

n as the set of messages that
node i views as unapproved at time n, V i,1

n as the set of messages that node i
considers approved by a single node j ∈ I(j ̸= i) at time n, and W i

n as the set of
messages that node i considers either unapproved or approved by a single node
(other than i) at time n. Given that the selection algorithm of the IOTA Tangle
requires any incoming transaction to approve at least two tips (and can approve
the same tip twice), we assume that each new message from node i approves
two messages chosen randomly with multinomial distribution, independently and
with replacement, in W i

n. Therefore, a message can potentially validate the same
message in W i

n more than once. Additionally, a message in W i
n might be approved

by multiple messages from Ci
n. Let Di

n be the set of approved messages by node
i at time n and let Di

n be the set of all approved messages by node i up to and
including time n. That is,

Di
n =

n⊔
t=0

Di
n.
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We assume that V i,0
0 = {0}, V i,1

0 = Di
0 = Ci

0 = ∅ and that a message cannot be
validated by the same node at two different times. We define Γ i

n,di as the set that
contains all messages viewed by i as approved by at least two different nodes at
time n+ 1. Node j is informed about the new set of unapproved messages with
dij units of time after n and also about that messages in Γ i

n,di should not be
approved after dij units of time from n. Assume that dij = dji. The evolution
of the set Γ i

n,di can be modeled as follows :

Γ i
n,di =

⋃
j∈I

Dj
n−dij

⋂⋃
l ̸=j

Dl
n−dil

 ,

where dij ∈ N is the delay for node j to observe the new messages sent by
node i and the messages approved by node i and di = (dij)j∈I . For example, if
s ∈ Γ i

n,di , there exist k, l ∈ I, such that s ∈ Dk
n−dik and s ∈ Dl

n−dil . That is, s
was validated by node k between time 1 and time n−dik and by node l between
time 1 and time n − dil. Note that, if s was validated at time n − dil, it will
only be visible to i at time n+ 1 and not at time n. The set W i

n is given by the
following formula:

W i
n+1 =

⋃
j∈I

n−dij⋃
t=0

Cj
t − Γ i

n,di .

Note that a node i can only validate a message once. That is the messages
validated only by i are no longer tips for i but are still tips in the system. We
define Γ i

n as the set of all approved messages at least by two different nodes
including i until time n and Γn as the set of all approved messages at least by
two different nodes until time n. Then,

Γ i
n = Di

n

⋂⋃
j ̸=i

Dj
n

 ,

and
Γn =

⋃
j∈I

Γ j
n.

Let Yn be the set of messages which are actually tips at time n. Then, Yn is
depicted by

Yn :=

(
n⋃

t=0

Ct

)
− Γn

and can be computed recursively as

Yn = Cn

⊔
(Yn−1 − Γn) ,
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where Cn =
⋃
i∈I

Cj
n. We also need to consider the set An of messages that were

created by time (n− d∗) and are tips at time n. That is

An :=

n−d∗⋃
t=0

Ct − Γn, (1)

where d∗ = max
i,j∈I

dij .

Example 1. If d = 0 and I = {1, 2, 3}, then

• V i,0
n = V j,0

n and V i,1
n = V j,1

n for each i, j ∈ {1, 2, 3}.
• The set Γ 1

n = Γ i
n,di is the set of all messages viewed by i as approved messages

by at least two different nodes at time n+ 1 for each i, j ∈ {1, 2, 3}. That is
Γ i
n is the set of validated messages by {1, 2}, {2, 3} or {1, 3}.

• W i
n = Yn, for each i ∈ {1, 2, 3}.

In this work, we use a multinomial random tip selection strategy. In fact, this
strategy is chosen for its ability to handle multiple outcomes with different prob-
abilities. Specifically, transactions in V i,0

n are more likely to be chosen by node
i than transactions in V i,1

n . We assume that transactions in V i,0
n have a two-

thirds chance of being validated by i, while transactions in V i,1
n have a one-third

chance. In other words, if ri ∈ N∗ is the number of new messages sent by node i
at each time n, the probability that a transaction a is validated by a node i at
time n is given by

P(a /∈ Γ i
n

∣∣W i
n) =

1 if a /∈ W i
n(

1− |V i,0
n |

|W i
n|

)r0i (
1− |V i,1

n |
|W i

n|

)r1i
if a ∈ W i

n,

where r0i and r1i are the rounded numbers of 4ri
3 and 2ri

3 respectively. We also

define r :=

I∑
i=1

ri and r0 :=

I∑
i=1

r0i . In the following section, we are interested in

the cardinality Xn of the tips set Yn at each time step n.

3 Finite bound over the expectation of the cardinality of
the tips set

In the following, we introduce a new proof regarding the existence of a fi-
nite bound on the expectation of the cardinality of the tips set. Such results
demonstrate that DAG-based DLs do not diverge, provided that the delays are
bounded. We begin by establishing the following useful properties of the set An

defined by (1). These properties are needed to prove the bound of the number
of tips Xn.

Lemma 1. Let i ∈ I and n ∈ N∗. Then,
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1. An ⊆ Yn.
2. The number of tips Xn = |Yn| is bounded as follows:

|An| ≤ Xn ≤ |An|+ rd∗.

3. The cardinal of the set of messages that node i believes to be unapproved or
approved by a single node (other than i) at time n, denoted by W i

n is upper
bounded as follows:

|W i
n+1| ≤ |An|+ 3rd∗.

4. We also have that W i
n is upper bounded by Xn as follows:

|W i
n+1| ≤ Xn + 2rd∗.

Proof. We will now prove the four statements:

1. Direct from definition of An.
2. Note that

Yn =

(
n⋃

t=0

Ct

)
− Γn ⊆

(
n−d∗⋃
t=0

Ct − Γn

)⋃(
n⋃

t=n−d∗+1

Ct

)
= An

⋃(
n⋃

t=n−d∗+1

Ct

)
,

which implies that Xn ≤ |An|+ rd∗.
3. We have

W i
n+1 =

⋃
j∈I

n−dij⋃
t=0

Cj
t − Γ i

n,di

⊆
⋃
j∈I

n−dij⋃
t=0

Cj
t − Γn−d∗

⊆

(
n−d∗⋃
t=0

Ct − Γn−d∗

)⋃(
n⋃

t=n−d∗+1

Ct

)

⊆

(
n−d∗⋃
t=0

Ct − Γn

)⋃(
n⋃

t=n−d∗+1

Ct

)⋃
(Γn − Γn−d∗)

⊆

(
n−d∗⋃
t=0

Ct − Γn

)⋃(
n⋃

t=n−d∗+1

Ct

)⋃⋃
j∈I

(
n⋃

t=n−d∗+1

Dj
t

) ,

⇒ |W i
n+1| ≤ |An|+ d∗r + 2rd∗

= |An|+ 3rd∗.
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4. Observe that:

W i
n+1 =

⋃
j∈I

n−dij⋃
t=0

Cj
t − Γ i

n,di

⊆
n⋃

t=0

Ct − Γn−d∗

⊆

(
n⋃

t=0

Ct − Γn

)⋃
(Γn − Γn−d∗)

⊆

(
n⋃

t=0

Ct − Γn

)⋃⋃
j∈I

(
n⋃

t=n−d∗+1

Dj
t

)
= Yn

⋃(
n⋃

t=n−d∗+1

Dt

)
⇒ |W i

n+1| ≤ Xn + 2rd∗.

In the following theorem, we prove a bound on the drift of Xn using the above
lemma.

Theorem 1. The drift of the number of tips Xn is bounded as follows

E(Xn+1

∣∣Xn = x) ≤ r + x− rr0(x− rd∗)

x+ 2rd∗

(
1− r0r

x+ 2rd∗

)
, (2)

Moreover, if Xn tends to the infinity, we have

lim
x→∞

E(Xn+1 −Xn

∣∣Xn = x) ≤ r − 4

3
r2. (3)

Furthermore, for a = 7(rd∗ + rr0) and r0 ≥ 2

E(Xn+1 −Xn

∣∣Xn = x, x ≥ a) ≤ −r

7
. (4)

Proof. Since each node acts independently at a given time, the probability that
an element s of An will be tip at time n+ 1 is given by

P(s /∈ Γn+1

∣∣s ∈ An) =
∏
i∈I

P(s /∈ Γ i
n+1

∣∣s ∈ An)

=
∏
i∈I

(
1− |V i,0

n |
|W i

n|

)r0i
(
1− |V i,1

n |
|W i

n|

)r1i

,
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which implies that the expected number of tips in An that no longer remain as
tips at time n+ 1 is given by

E(|An ∩ Γn+1|
∣∣Xn = x) = |An| − |An|

∏
i∈I

(
1−

|V i,0
n+1|

|W i
n+1|

)r0i
(
1−

|V i,1
n+1|

|W i
n+1|

)r1i

≥ |An| − |An|
∏
i∈I

(
1−

|V i,0
n+1|

|W i
n+1|

)r0i

≥ |An| − |An|
∏
i∈I

(
1− r

x+ 2rd∗

)r0i

(5)

= |An| − |An|
(
1− r

x+ 2rd∗

)r0

(since r0 :=
∑
i∈I

r0i )

≥ |An| − |An|
(
1− rr0

x+ 2rd∗
+

r0(r0 − 1)r2

2(x+ 2rd∗)2

)
= |An|

(
rr0

x+ 2rd∗
− r0(r0 − 1)r2

2(x+ 2rd∗)2

)
=

|An|rr0

x+ 2rd∗

(
1− (r0 − 1)r

2(x+ 2rd∗)

)
≥ |An|rr0

x+ 2rd∗

(
1− r0r

x+ 2rd∗

)
≥ rr0(x− rd∗)

x+ 2rd∗

(
1− r0r

x+ 2rd∗

)
, (from Lemma 1)

where (5) follows from Lemma 1 and the fact that |V i,0
n | ≥ r. Recall that

Yn+1 = Cn+1

⊔
(Yn − Γn+1)

then
Xn+1 = r +Xn − |Yn ∩ Γn+1|.

Taking the conditional expectation on both sides, we obtain

E(Xn+1

∣∣Xn = x) = r + x− E(|An ∩ Γn+1|
∣∣Xn = x)

≤ r + x− rr0(x− rd∗)

x+ 2rd∗

(
1− r0r

x+ 2rd∗

)
which provide (2). The upper bound is coming from the fact that An ⊆ Yn For
the proof of (3), it suffices to take the limit as x → ∞ in (2), we obtain

lim
x→∞

E(Xn+1 −Xn

∣∣Xn = x) ≤ r − rr0

= r − 4

3
r2.
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Let a = 7(rd∗ + rr0). Then,

E(Xn+1 −Xn

∣∣Xn = x, x ≥ a) ≤ r − rr0(x− rd∗)

x+ 2rd∗

(
1− rr0

x+ 2rd∗

)
≤ r − 2r(x− rd∗)

x+ 2rd∗

(
1− rr0

x+ 2rd∗

)
≤ r − 2r(a− rd∗)

a+ 2rd∗

(
1− rr0

a+ 2rd∗

)
(6)

= r − 2r(6rd∗ + 7rr0)

9rd∗ + 7rr0

(
1− rr0

9rd∗ + 7rr0

)
≤ r − 2r(6rd∗ + 7rr0)

9rd∗ + 7rr0

(
1− rr0

7rr0

)
≤ r − 2 ∗ 6r2d∗

9rd∗
6

7

= r − 8r

7
=

−r

7
,

where (6)follows from the monotonicity of the functions 2r(x−rd∗)
x+2rd∗ and

(
1− rr0

x+2rd∗

)
in x.

We recall, from Theorem 1 in [7], that if a stochastic process has a negative
upper bound on the drift and bounded jumps, then it has a bounded expectation.
Hence, from the above results, we can deduce the existence of an upper bound
on the expected number of tips Xn.

Corollary 1. By construction, the process Xn have a bounded jumps. That is,

E(|Xn+1 −Xn|p
∣∣Xn, ..., X0) ≤ (2r)p, ∀p ≥ 0.

Then, using the inequality (4) and Theorem 1 in [7], we deduce that

E(Xn) < ∞.

4 Conclusion

We herein introduce a new definition of tip in DAG-based DL and propose an
innovative mathematical model, based on stochastic sets of messages, to describe
the behavior of the DAG-based DL considering the existence of heterogeneous
delays between nodes. Moreover, we establishe an upper bound on the drift and
then derive an upper bound on the expected number of tips.
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