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Abstract. This paper proposes an optimization-based formulation of
the decarbonization problem for the transportation sector, one of the
main sources of CO2 emissions. An important feature of the proposed
approach is that a detailed model is considered i.e., with different trans-
portation modes and compositions of the associated fleets of vehicles.
Using real data, this optimization problem is solved numerically under
monetary and CO2 emissions constraints, but also constraints ensuring
the feasibility of the transition. The obtained control actions provide
insights into the transition from existing transportation modes to more
sustainable ones. A discussion is made on the complexity of this problem:
the dependency of resolution time on the budget values is in particular
numerically assessed.

Keywords: Decarbonization · Non-convex Quadratic Programming ·
Resource allocation.

1 Introduction
The imperative to mitigate climate change demands effective decarbonization
strategies at all governance levels. The European Union has set ambitious Green-
House Gas (GHG) reduction targets for 2050, requiring member states to develop
comprehensive national and regional strategies5. GHG emissions are henceforth
measured in CO2 equivalents and will be referred to as CO2 emissions. France
is adopting a decentralized approach in which each region creates and executes
its own decarbonization plan (the so-called “SRADDET”). This decentralization
poses significant challenges, especially to find efficient mechanisms in order to
incentivize the different regions to make the proper decarbonization efforts.

Research on decarbonization often focuses on global (world) or local (city)
scales. Globally, strategies involve international treaties and broad policies tar-
geting sector-wide GHG reduction, with analyses ranging from game theory
[1,11] to optimal control [7] and economic impacts [4].
5 Climate neutrality by 2050, with “Fit for 55” intermediate milestone - with a reduc-

tion of at least 55% of net GHG target by 2030.
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The transportation sector is central to these efforts, due to its substan-
tial CO2 emissions impact6. Studies on decarbonizing transportation are either
macroeconomic model formulations [15,13] or focus on a given aspect, like elec-
tric vehicle charging stations [2], or on a specific geographic area [5]. Despite
extensive studies, an intermediate-scale approach remains under-explored, even
if critical for harmonizing various transportation modes and fleet compositions
regionally. Our work aims to fill this gap, providing an optimization model for
the private passenger sector, sidestepping the limitations noted in other models
[6,8] with notions of Quality of Service (QoS) and congestion, and allowing sub-
stitution among all transportation modes. Moreover, it provides insight on the
feasibility to meet decarbonization target under monetary constraints.

The main contributions of this paper are: (i) The introduction of a novel
generic optimization model, specifically designed to target intermediate levels of
analysis within the private passenger sector of a region. This model flexibility al-
lows for adaptation across various geographical scales. (ii) A refined formulation
of QoS for passengers within the transportation sector is proposed, enhancing
the model realism. (iii) The theoretical aspects of the problem are discussed and
reformulated into a form amenable to numerical computation. (iv) The Opti-
mization Problem (OP) is solved using dedicated nonlinear methods, and the
results are analyzed across realistic scenarios.

The remainder of this paper is structured as follows: Sec. 2 outlines the
transportation model discussed subsequently. Sec. 3 reformulates the OP as a
Non-Convex Quadratic Problem (NCQP), facilitating effective resolution within
the given context. Sec. 4 presents simulation results that not only highlight
potential trade-offs important for regional decarbonization strategy design, but
also identify the parameters that most significantly affect resolution time.

2 Problem Formulation
2.1 Decarbonizing transportation under constraints

A tractable decarbonization framework needs to consider a long-term horizon
and a discrete-time dynamics in which the discrete set of sampling times T =
{1, . . . , T} is typically chosen to represent a period of one or few years7. At
each time t ∈ T , the region has a desired total level of transportation usage Xt,
measured in passenger.km, which represents the transportation of one passenger
by a particular mode of transportation over one kilometer. Given this desired
transportation usage, the unique decision-maker - referred to hereafter as the “re-
gional planner” or simply “planner”, is allocated a CO2 emissions budget Emax

t .
To achieve this target, the planner employs various decarbonization levers while
adhering to a monetary budget limit of Bmax

t . Under these constraints, the de-
carbonization levers have to be activated maximizing the transportation Quality
of Service (QoS), as introduced in Sec. 2.3.

Two key aspects should be noted: (i) Passenger (or “user”) reaction/behaviour
is simply modeled as a mean representative user. In other words, we do not con-
6 About one third of French CO2 emissions in 2023.
7 Public targets granularity e.g., 4 years for French “Stratégie Nationale Bas-Carbone”.
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sider a variety of particular reactions to the decisions of the regional planner.
(ii) The CO2 emissions and monetary budgets are here taken as exogenous pa-
rameters.

2.2 Usage, vehicles and decarbonization decision-making modeling

Our model is based on three main ingredients, that are described in the following
paragraphs : the modal usage, the fleet of vehicles and the infrastructure.

Modal Usage modeling. In addition to the aggregation over users mentioned in
Subsec. 2.1, transportation usage representation is aggregated over both space
(within the region) and time (over the considered time step)8.

Let K = {0, 1, · · · ,K} be the set of transportation modes. The mode k = 0
represents the sobriety which corresponds to reduced or avoided travels, encap-
sulating passengers.km that are in fact not spent. The modes k = 1, · · · ,K
represent the conventional means of transportation (car, train, bus, etc.). The
primary transportation service metric is xk

t , the transportation usage of mode k
at time t, measured in passengers.km. For a more convenient writing, we intro-
duce the modal share of mode k at t, x̃k

t , defined by

∀k ∈ K,∀t ∈ T , xk
t = x̃k

tXt,
(
x̃k
t

)
k∈K ∈ ∆K+1, (1)

with ∆K+1 denoting the K-dimensional simplex.
A first transportation decarbonization lever is now introduced: the modal

switch, with variable βk,l
t , the proportion of mode k replaced by mode l at time

t, inducing the following dynamics for the modal shares:

∀k ∈ K,∀t ∈ T , x̃k
t+1 = x̃k

t −
∑
l∈K

βk,l
t +

∑
l∈K

βl,k
t . (2)

It is imposed that for all k ∈ K, βk,k
t = 0 at any time t. This shift variable

βk,l
t corresponds to the facilitation “process” (subsidies, communication, etc.) so

that users are incentivized to switch from k to l.
Practical limitations impose to consider lower and upper bounds on modal

switch, as well as on induced modal usage.

∀k, l ∈ K,∀t ∈ T , 0 ≤ βk,l
t ≤ β

k,l

t, 0 ≤ xk
t ≤ xk

t ≤ xk
t . (3)

In particular, these bounds allow: (i) Excluding “impossible” travels e.g.,
long-distance walking commute. (ii) Integrating only modal usage changes that
correspond to a gradual transition, without abrupt shift (as new usages adoption
is typically associated to a progressive diffusion process [14]).

After introducing modal usage, the vehicle fleet is now described.

Vehicle Fleet Dynamics. Each mode k is associated to a set Ik of vehicle types
aggregated as a fleet. For example, electric or gasoline cars (resp. trains) types
compose the fleet of the car (resp. train) mode. We introduce this distinction to
access the different CO2 emissions factors of the different types of vehicle. The
8 Considering specificities of different seasons, days of weeks, times of days (resp.

geographical locations) are indeed too complex to be integrated in the optimization
setting described hereafter.
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number of vehicles of type i at time t is denoted by the variable vit. To accom-
modate the needs of different transportation modes, there must be a sufficient
total number of vehicles - aggregated over the types. Mathematically:

∀k ∈ K,∀t ∈ T , xk
t ≤

∑
i∈Ik

dirivit, (4)

with the parameters di and ri being the average distance traveled with a vehicle
of type i over the step time and the average occupancy rate of the vehicles in
this fleet.

Regardless of their usage, vehicle fleets undergo dynamic changes through
natural turnover, driven by vehicle lifespan and decay. New vehicles of type
i ∈ Ik, added to the fleet during time t, can either be introduced, with variable
θit, or replaced with another vehicle j ∈ Ik reaching its end of life, with variable
νj,it . These variables, θit and νj,it , which govern the purchase or replacement of
vehicles, are key levers used by the regional planner. Representing the total
number of vehicles of fleet i at the end of t, wi

t is obtained by summing the two
previous quantities:

∀k ∈ K,∀i ∈ Ik,∀t ∈ T , wi
t = θit +

∑
j∈Ik

νj,it . (5)

Note that the main reason to distinguish newly introduced vehicles and replaced
ones is monetary, as these two quantities have a different impact on the budget
expressed in (10). Also, it is assumed that vehicles are used until their end-
of-life, of duration τ i, which is assumed to be a deterministic parameter. This
simplification: (i) Allows the regional planner to measure all emissions generated
by the usage of vehicles over their lifetime. (ii) Leads to a tractable model. (iii)
Can induce an optimality loss compared to a model where vehicles could exit
or be replaced before their end-of-life. Assessing this optimality loss is left as a
future perspective. Altogether, the vehicle fleets dynamics expresses:

∀k ∈ K,∀i ∈ Ik,∀t ∈ T , vit+1 = vit − wi
t−τ i + wi

t, (6)

∀k ∈ K,∀i ∈ Ik,∀t ∈ T , 0 ≤ θit, 0 ≤
∑
j∈Ik

νi,jt ≤ wi
t−τ i . (7)

After detailing the transportation model’s usage and vehicle fleet dimensions,
the infrastructure is described next.

Infrastructure: At time t and for each transportation mode k ∈ K, ykt is the
variable representing the number of kilometers that the fleet k of vehicles can
travel, measured in vehicles.km. For simplicity, it is assumed that infrastructures
are independent between the different modes. For example, cars and buses do
not drive on the “same roads”. Both fleet and infrastructure states are related
through:

∀k ∈ K,∀t ∈ T ,
∑
i∈Ik

divit ≤ ykt . (8)

Infrastructures are subject to natural decay from usage and environmental
factors, necessitating regular renewal. Investments can be made to counterbal-
ance this effect. The variable µk

t represents the expansion of the infrastructure
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of transportation mode k at time t (another political lever). The dynamics of
infrastructure is then given by:

∀k ∈ K,∀t ∈ T , ykt+1 = δkykt + µk
t , 0 ≤ µk

t ≤ µk
t , (9)

where 0 < δk ≤ 1 stands for the depreciation rate of infrastructure of mode k.
The right hand side of constraint (9) accounts for the operational constraints
limiting the capacity increase of an infrastructure, as building time.

The decisions previously presented concerning modal usage, vehicle fleets and
infrastructures are associated to monetary and emissions budget constraints;
they are gathered in the following section.

The decisions regarding modal usage, vehicle fleets, and infrastructure, con-
strained by monetary and emissions budgets, are presented in the next section.

Emissions and monetary budgets. Let describe the exogenously set monetary
costs: (i) ck,lt,switch represents the cost of incentivizing users’ transition from trans-
portation mode k to l e.g., with subsidies for public transportation subscriptions
to make the switch from private vehicles more affordable and csobt the cost of
maintaining one kilometer of sobriety; (ii) cit,buy (resp. ci,jt,conv) are the costs of
adding (resp. replacing) one vehicle to the fleet; and (iii) ckt,inv are the costs of
infrastructure investments.

All these costs provide the monetary budget constraint: ∀t ∈ T ,∑
k∈K

[
ckt,invµ

k
t +

∑
l∈K

ck,lt,switchβ
k,l
t Xt+

∑
i∈Ik

[
cit,buyθ

i
t+

∑
j∈Ik

ci,jt,convν
i,j
t

]]
+x0

t c
sob
t ≤ Bmax

t .

(10)
Moreover, the CO2 emissions budget constraint, is directly expressed by the
vehicle fleets state and the respective emissions factors of the different vehicle
types ei:

∀t ∈ T ,
∑
k∈K

∑
i∈Ik

dieivit ≤ Emax
t . (11)

In addition to the different constraints introduced previously, the following
section describes the objective of the regional planner; it completes the consid-
ered -transportation sector decarbonization - OP definition.

2.3 Quality of Service (QoS) with congestion

Transitioning to a decarbonized transportation sector - constrained by monetary
and emissions budgets, the maximization of users QoS is crucial to ensure policy
adoption. Here, the transportation QoS is defined as follows:

QoS(x, y, v) =
∑

k∈K\{0}

qkxk
(
1−

∑
i∈Ik

divi

yk

)
− q0x0, (12)

where qk > 0 is a weight parameterized to translate user preference for mode
k - emphasizing comfort, accessibility and affinity. Remember that index k = 0
is to represent the sobriety fictive mode, with a specific treatment regarding
QoS. This formulation also considers the impact of traffic congestion with the
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Modal Usage
Variables: xk

t , x̃
k
t , β

k,l
t

Constraints: (1)-(3)

Vehicle Fleet
Variables: vit, wi

t, θ
i
t, ν

i,j
t

Constraints: (5)-(7)

Infrastructure
Variables: yk

t , µ
k
t

Constraints: (9)

(4) (8)

Objective
max

∑T
t=0 QoS(xt, yt, vt)

Constraints: (10) and (11)

Fig. 1. Summary of the transportation sector OP (variables and constraints). All quan-
tities not shown in the diagram are exogenous parameters and are assumed to be known.

multiplication factor 1 −
(∑

i∈Ik divi
)
/yk: the closer the distance covered in

mode k,
∑

i∈Ik divi, to the associated infrastructure capacity yk, the lower is
this term. Then, the QoS of a mode deteriorates when its fleet is too large for
its infrastructure [10].

2.4 Optimization Problem Formulation

The regional transportation planner’s optimization model aims to maximize QoS
over a planning horizon. It is constrained by monetary and emissions budgets,
and assumes perfect knowledge of all parameter trajectories. This involves strate-
gic decisions concerning modal usage, vehicle fleet management, and infrastruc-
ture investment. The obtained OP is as follows:

max
∑
t∈T

QoS(xt, yt, vt)

s. t. Modal usage: (1)-(3), Vehicle fleets: (4)-(7), Infrastructure: (8)-(9),
Monetary and CO2 emissions budgets: (10) and (11).

3 Mathematical Discussion
Our optimization problem is a continuous non-linear and non-convex problem,
which makes it nontrivial to solve. Indeed, this problem is a fractional problem :
all the constraints are linear, and the congestion term in the QoS formulation (12)
makes the objective function fractional and non-convex. This problem can be re-
formulated as a Non-Convex Quadratic Program (NCQP). We need to introduce
intermediate variables pkt , and add the quadratic constraints pkt y

k
t =

∑
i∈Ik vitd

i

for all k ∈ K and t ∈ T . Then, by replacing the fraction by pkt in the objective,
the QoS function becomes linear.

However, the problem remains inherently non-convex, presenting challenges
in finding optimal solutions efficiently, even more if the horizon is far (T big).
We then use a non-linear solver conducting Spacial Branch and Bound (SBB)
or Outer Approximation approaches. Recall that SBB is an algorithm of global
optimization used to solve Non Linear Problem (NLP) and Mixed-Integer NLP
[9]. At each iteration, a local optimal point is found by solving an NLP as a
black-box. Since NLP is, in general, an NP-hard problem in itself [12], finding the
global optimum of our non-convex problem is also NP-hard. In the computations
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Fig. 2. Computation times and feasibility with parameters as in Sec. 4, x-axis corre-
sponds to the reduction factor applied each year after the first year (e.g., 0.90 corre-
sponds to a 10% decrease.). Constrained budget lead to small resolution time.

of Sec. 4, solving our model with a SBB takes longer with higher monetary and
emissions budgets due to a larger set of feasible solutions. In contrast, tighter
budgets allow for quicker optimal solutions. Fig. 3 illustrates this, with colors
indicating the time taken to solve, with a 10 seconds threshold.

4 Simulation
4.1 Methodology

The code is available at [3]. Simulations use latest data available for the Bre-
tagne region in France. Vehicle usage data and lifespan parameters, vit and τ , are
taken from French government transportation statistics [16], while initial modal
shares, xk

0 , rely on recent surveys by CEREMA [17]. Emissions factors ei, are
based on data from ADEME’s environmental database [18], and cost parame-
ters, ci,j··· , are obtained from socio-economic studies by the French Ministry of
Ecology [19]. These values are assumed to be constant over time; however, there
are financial uncertainties and challenges in accurately determining user prefer-
ences qk parameters. This issue could potentially be addressed through robust
optimization techniques9. Here, assuming constant costs is already conservative.

The Gurobi Solver is employed to solve the OP, chosen for its ability to handle
NCQP and to guarantee optimality10 of the solution by using SBB techniques.

4.2 Optimal Trajectory with Emission and Monetary Budgets

The monetary budget Bmax
t is constant over time, while emissions budgets Emax

t

decrease by 10% annually, starting from 10% above the initial emissions level.
9 Introducing an uncertainty set for QoS parameters and setting conservative financial

and emission budgets to handle worst-case scenarios.
10 Up to a precision of the gap between the lower and upper bounds of the objective.
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Table 1. Budget Usage and Monetary Distribution for Low and High Budget Scenarios

Low Budget Scenario High Budget Scenario
Budget Used (%) Budget Used (%)

Emissions (Mteq.CO2) 36.04 33.79 (93.8%) 36.04 33.5 (93.1%)

Monetary (Me) 800 800 (100%) 8000 8000 (100%)
Allocation between levers

Sobriety 48.16% 1.66%
Modes 23.14% 1.35%

Vehicles 7.86% 85.14%
Infrastructures 20.84% 11.85%

The modal categories K = {Sobriety, Car, Tramway, Bus, Walking, Biking,
Train} include a diversified vehicle fleet for “Car” mode, comprising Diesel, Elec-
tric, and Gasoline types ICar = {Diesel,Electric,Gasoline}. QoS coefficients qk

reflect the preference hierarchy among the modes, based on initial shares: car
(1.5), tramway (1.2), bus (1), walking (0.5), biking (0.9), and train (1.2), balanc-
ing speed and comfort to mirror realistic preferences. Subsidy costs and baseline
data are sourced from previously mentioned references. Mode shifts β are capped
at 5%, and investments per mode k at time t cannot exceed 10% of infrastructure
at time t− 1. Tab. 1 details emissions and monetary allocations across different
budget levels (low and high). Fig. 3(a) and Fig. 3(b) depict modal share evolu-
tion under varying budgets, while Fig. 3(c) and 3(d) display the respective fleet
compositions.

Monetary constraints significantly impact transportation choices, promoting
sobriety due to its lower cost despite a reduction in QoS. Under tight budget,
Fig. 3(a) illustrates a marked decline in traditional car usage, offset by increases
in bus, walking, biking, and train modes, which are more cost-effective and less
polluting (due to the need for financing cars). Consequently, the car fleet size is
reduced by a third over 15 years, with a notable decrease in gasoline vehicles,
which emit more than diesel, and a slight increase in electric vehicles.

In contrast, the high budget scenario shows minimal sobriety, as seen in
Fig. 3(b) with only marginal reductions in car usage. Cars offer higher service
quality, but fleet modernization to reduce emissions is expensive. Therefore, a
high budget is necessary to maintain private car usage — through infrastructure
investment and a shift to electric vehicles — while meeting decarbonization
goals, as depicted in Fig. 3(d), where the fleet transitions entirely from diesel
and gasoline to electric, maintaining a stable total vehicle count.

The differences in budget allocation are highlighted in Tab. 1. Despite a ten-
fold difference in available funds, the entire budget is utilized in both scenarios.
In the low-budget scenario, funds mainly compensate for reduced usage and sup-
port modal shifts. In contrast, the high-budget scenario focuses on transitioning
cars from high to low emissions and enhancing infrastructure to improve QoS.

5 Conclusion
This study presents an optimization model tailored for the private passenger
transportation sector at an intermediate scale, typically the one of a region. The
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(b) High budget: modal shares

2023 2025 2027 2029 2031 2033 2035 2037
Time (years)

10k

100k

1M

Nu
m

be
r o

f v
eh

icl
es

Diesel
Electric
Gasoline
Total

(c) Low budget: vehicle fleet

2023 2025 2027 2029 2031 2033 2035 2037
Time (years)

10k

100k

1M

Nu
m

be
r o

f v
eh

icl
es

Diesel
Electric
Gasoline
Total

(d) High budget: vehicle fleet
Fig. 3. Comparison of optimal solution of the two scenarios of Tab. 1.

development of this model involved a significant modeling work, including the
formulation of assumptions and relationships essential for capturing the com-
plexities of the transportation sector. By reformulating the optimization prob-
lem as a Non-Convex Quadratic Problem, the model effectively balances CO2

emissions and monetary budget constraints. It provides actionable insights for
regional policy planners with an introduced metric of congestion - of vehicles on
transportation infrastructure.

The proposed model has been reformulated to be numerically tractable on
real instances; the resolution being faster for small budget upper bounds. This
observation on computation times is particularly interesting for the next stage
of this research work, enhancing this model into a bi-level problem. This bi-level
framework will include an upper-level decision-maker (e.g., a State) that opti-
mizes both emissions and monetary budgets (imposed to the lower-level agent
considered here). Indeed, this upper level agent will naturally tend to set budget
values at low values. This enhancement will allow to capture the dynamics be-
tween different levels of decision-making, regional versus national, and provide
deeper insights on optimal decarbonization strategies at a national scale.
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