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Abstract. We tackle radio resource allocation in 5G and B5G networks,
focusing on applications with stringent delay requirements. We formulate
this problem as a discounted Markov Decision Process (MDP), consider-
ing each user’s Channel Quality Indicator and queue status. We intro-
duce a reducible MDP using state abstraction. By mapping transition dy-
namics and rewards to an abstract state space, we simplify solving MDPs
with smaller state spaces, avoiding the complexity of the original high-
dimensional state space. We explore different methods for weighted state
aggregation and verify through simulations that our dimension reduction
strategy yields results close to the optimal policy.

Keywords: radio resource allocation · markov decision process · dimen-
sion reduction.

1 Introduction

The fifth generation (5G) of wireless networks has been purposefully designed
to accommodate a wide range of network services, each with its own require-
ments. These 5G services are classified into three primary categories: ultra-
reliable and low-latency communication (uRLLC), enhanced mobile broadband
(eMBB), and massive machine-type communication (mMTC). These use cases
frequently have conflicting demands, necessitating a radio design that is highly
versatile and adaptable to address the varying conditions of each service cate-
gory efficiently [2]. In addition to the strategic configuration of the radio in-
terface (e.g., numerology settings), ensuring specific quality of service levels,
particularly to meet stringent maximum delay requirements, heavily relies on
the effectiveness of resource allocation algorithms.

In this work, we study a 5G/B5G downlink scheduling system. We model
the resource allocation problem as a Markov Decision Process (i.e. the ground
MDP), incorporating both the Channel Quality Indicator (CQI) of each user in
each Physical Resource Block (PRB) and the queue status of each user. Our goal
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is to find a scheduling policy that minimizes the queuing delay experienced by
users, effectively reducing the sum-delay. Diverse applications, including real-
time video streaming, online gaming, and smart transportation, underscore the
critical importance of optimizing downlink scheduling and resource allocation
to ensure seamless connectivity and high performance across various sectors.

Interestingly, the vast majority of works that study the resource allocation
problem by modeling it as a MDP then solve this complex problem, which in-
volves high-dimensional states and action spaces, using Artificial Intelligence
techniques. In particular, Reinforcement Learning (RL) is a prevalent tool em-
ployed in these studies (see for example [6, 1, 4, 5]). Inspired by state abstrac-
tion techniques, which have been shown to significantly improve the efficiency
of MDP-solving algorithms [3, 7], we formulate an abstract MDP. Our approach
defines the similarity between states and works with a reduced complexity sys-
tem by grouping similar states into aggregate classes. The aggregation defines
transition and reward dynamics between classes.

The main contribution of this work is the introduction of an approach for
solving high-dimensional Markov Decision Processes (MDPs), specifically in
the field of mobile communications. We propose different abstractions to solve
the original resource allocation problem efficiently. By conducting a thorough
comparative analysis of different weight distribution strategies for state aggre-
gation, we identify the most effective approximate solution for the base MDP.
This analysis considers factors such as convergence time, proximity to the op-
timal solution (the solution of the ground MDP), and other relevant metrics.
Our results show significant improvements in the resolution times of the re-
sulting MDP, while maintaining minimal error and ensuring the extrapolation
to the original model. Moreover, we provide access to our repository housing
the simulations conducted, facilitating further exploration and validation of
our results (GitHub Repository3).

The remainder of the article is structured as follows. In Section 2 we intro-
duce our hypotheses and the main characteristics of the considered resource
allocation problem. We also formulate our ground MDP and provide some in-
tuition that will explain the state aggregation, which will be the basis of Section
3. In Section 3 we describe the different abstractions and we present some re-
sults. We conclude in Section 4.

2 Model Description

The scheduler efficiently allocates bandwidth among slices and users, using the
Physical Resource Block (PRB) as its basic unit. In 5G’s OFDM system, a PRB
consists of 12 OFDM subcarriers and one Transmission Time Interval (TTI). In
this work, we aim to reduce the state-action space involved in the scheduler’s
decision-making process. To start, let us first introduce the problem descrip-
tion.

3 https://github.com/Tsemogne/Radio-Resource-Allocation
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2.1 Problem Description

The time is divided into discrete time slots (i.e. TTIs). Our system comprises N
User Equipments (UEs), denoted as ue1, . . . ,uei , . . . ,ueN , and M PRBs, denoted
as prb1, . . . ,prbj , . . . ,prbM . We assume that the Channel Quality Indicator (CQI)
for each UE in each PRB, represented as hi,j , remains constant throughout the
time. These CQI values are organized into an N×M matrix, denoted as h, which
we refer to as the Channel Quality (CQ) matrix. At each time slot, our scheduler
allocates each PRB to exactly one UE for that time slot duration. This allocation
can be represented as a tuple a, where a(j) represents the UE to which prbj is
allocated. In matrix form, a is an M ×N matrix. Both matrix are represented
in Eq.(1). Here, aj,i equals 1 if the j-th PRB is allocated to the i-th UE and 0
otherwise. Notably, each row in matrix a has only one non-zero entry, indicating
the UE to which the corresponding PRB is allocated.

h =



h1,1 . . . h1,j . . . h1,M
...

...
...

hi,1 . . . hi,j . . . hi,M
...

...
...

hN,1 . . . hN,j . . . hN,M


a =



a1,1 . . . a1,i . . . a1,N
...

...
...

aj,1 . . . aj,i . . . aj,N
...

...
...

aM,1 . . . aM,i . . . aM,N


(1)

We assume that once an PRB is allocated to a UE, it enables the transmission
of qhi,j bits, where q is a positive constant real number. The total number of bits
scheduled for transmission by the i-th UE is given by Ti :

Ti = q
M∑
j=1

hi,jaj,i . (2)

Then, the size of the data remaining in the buffer of the i-th UE after transmis-
sion is calculated as:

resti = max(0,bi − Ti). (3)

Here, bi represents the size of data in the buffer at the beginning of the time
slot4. After the transmission, the buffer of each UE with a maximum size of B
bits receives a random number li of bits, following a known probability distri-
bution. The buffer can’t store more than B − resti bits and will drop any extra
bits. Therefore, the size of the data in the buffer after the time slot is:

b′i = min(B, li + resti) . (4)

The decision maker incurs two costs: one for the dropped data and another for
the delay associated with the non-transmitted data:

c′i = α
(
max(0, li + resti −B)

)x
+ β (resti)

y , (5)

4 We omit the temporal reference to clarify the notation. Note that resti represents
bi (t + 1), then Eq.(3) can be re-written as bi (t + 1) = max(0,bi (t)− Ti (t))..



4 L. Inglés et al.

where α, β, x, and y are positive coefficients. The first term represents the cost
due to excess data that exceeds the buffer capacity, while the second term ac-
counts for the penalty related to the delay of the data remaining in the buffer.

2.2 The ground MDPModel

Our problem can be modeled as an MDPM = (B,A,P,c) where:

– The state of the network is the size b = (bi)
N
i=1 of the data in the buffers with

0 ⩽ bi ⩽ B, then B = {0, . . . ,B}N ;
– An action is any matrix a ∈ {0,1}M×N with exactly one non-zero entry in

each row;
– The transition probabilities are given by

P (b′
∣∣∣b,a) =

N∏
i=1

P

{
li = b′i − resti

}
=

N∏
i=1

E
l
[
1{b′i=resti+li }

]
(6)

where resti is defined in Eq. (3);
– The expected cost associated with the transition of each UE buffer is related

to Eq. (5). That is, the cost function is defined by

c (b,a) =
N∑
i=1

E

[
α
(
max(0, li + resti −B)

)x
+ β (resti)

y
]
. (7)

We now introduce the value function V π(b), that indicates how beneficial
(or detrimental) it is to be in each state while adhering to the policy π, as fol-
lows,

V π(b) = E

 ∞∑
t=0

γ tct
(
bt ,π(bt)

)∣∣∣∣∣∣∣b = b0

 . (8)

where γ is the discount factor. Then, the scheduling problem’s objective is
to determine the scheduling policy that solves the optimization minπ∈ΠV π(b)
where Π denotes the set of all possible policies. If there are a finite number of
states, then in principle dynamic programming techniques obtain the optimal
policy. However, the difficulty of this dynamic programming increases expo-
nentially in the number of states, which in this case increases exponentially in
the number of UEs.

2.3 Intuitions for Dimension Reduction

We can observe that the total number of possible states can be expressed as
|B| = (B + 1)N . For instance, if we have B = 2 and N = 3, the total number of
states is |B| = 27. However, if we consider an increase to B′ = 3 and N ′ = 5, the
total number of states becomes |B′ | = 1024. This substantial growth in the num-
ber of states with small increments in B and N underscores the computational
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complexity of the problem. When extending this model to a real-world scenario
with large values of N and B, such as in 5G network contexts, the defined model
becomes unmanageable.

In order to address the exponential growing of the state space, let us first
explore the dynamics of our system. In doing so, we can find that, on average,
the scheduler allocates M

N qHi bits for transmission from the buffer of a UE with

bi bits. Therefore, the remaining bits in buffer are max
(
bi −

M
N

qHi ,0
)

where

Hi =
∑M

j=1 hi,j is the average CQI of the UE. This means that, in expectation, the

buffer is overloaded if E [li] + max
(
bi −

M
N

qHi ,0
)
⩾ B, i.e., if

E [li] > B or
{
E [li] ⩽ B
bi ⩽ B+ M

N qHi −E [li]
.

That is, assuming that each buffer satisfy the minimum requirement E [li] ⩽
B, we can characterize an UE by the expected difference between the transmis-
sion and the arrivals as:

χ (i) =
M
N

qHi −E [li] (9)

In order to show the impact of the selected characteristic on the resource al-
location algorithm, we have constructed a simple scenario involving three users
N = 3, each with a maximum buffer size of 2 bits B = 2, and two physical re-
source blocks available for allocation M = 2. We have solved the MDP (defined
in previous subsection) using the value iteration algorithm and obtained the
results shown in Figure 1.

In this proposed scenario, we have assigned similar arrival rates to UE_1
and UE_2, whilst a different one to UE_0. Consequently, the characteristics of
UE_1 and UE_2 are very similar. Analyzing the figure, we observe a correlation
in resource allocation between UE_1 and UE_2. For the same states, UE_1 and
UE_2 are more likely to receive the same amount of resources compared to
UE_0 - UE_2 or UE_0 - UE_1. More precisely, UE_1 and UE_2 share the same
allocation within thirteen states, while UE_0 shares eight with UE_1 and only
six with UE_2. Additionally, between UE_1 and UE_2, when one is favored in
the current allocation, the next allocation tends to favor the other, resulting in
assignments close to the average. This artificial scenario depicts how users with
similar characteristics tend to obtain similar assignations.

Considering the aforementioned, we can group the states to address the is-
sue of the state space. We will group the states using abstractions inspired by
the concepts presented here. This way, we will obtain a new MDP which con-
sists of a whole new set of states with lower cardinality. Therefore, it becomes
easier to search for a solution to the original problem in this new MDP, as it
significantly reduces the computational cost. Afterward, we may finally infer
the solution into the original MDP.
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Fig. 1: Comparison of Resource Allocation Grids. The horizontal axis represents
the UEs with their associated characteristics, while the vertical axis corresponds
to the state index. The number in each grid element indicates the number of
bits in the user’s buffer and the color represents the number of resource blocks
assigned to each UE for the respective state.

3 Dimension Reduction

To solve our MDP we formulate an abstract one by transfer of its dynamics
on a smaller set of “abstract states” (or mega states) that correspond to classes
of ground states. In this section we present the proposed abstractions and the
obtained results.

3.1 Grouping the States

Motivated by the intuition presented in the previous section, a natural crite-
rion for this grouping is to use the definition given in Eq.(9) as a character-
istic, among other possible criteria. Then, all UE characteristics lay in the in-

terval K =
[

min
i=1,...,N

χ (i) , max
i=1,...,N

χ (i)
]
. To group the UEs, we divide the range K

of characteristics in a certain number K of contiguous intervals K1, . . ., Kk , . . .,
KK by the mean of bounds min

i=1,...,N
χ (i) = β0 < . . . < βk < . . . < βK = max

i=1,...,N
χ (i),

by posing
{
Kk = [βk−1,βk] if k < K
KK = [βK−1,βK ]

. Now we group UEs of which character-

istics lay in the same division. So, the k-th group of UEs is guek = χ−1 (Kk) =
{i = 1, . . . ,N

∣∣∣βk−1 ⩽ χ (i) < βk} if k < K , or guek = {i = 1, . . . ,N
∣∣∣βK−1 ⩽ χ (i) ⩽ βK }

if k = K . Finally, we group the states according to the total number φk (b) =
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i∈guek bi of bits in each group of UE’s buffer. The class of a state b is thereby

determined by the K-tuple φ (b) = (φ1 (b) , . . . ,φk (b) , . . . ,φK (b)). Clearly, φ is an
abstraction that takes values in the set U =

�K
k=1 {0, . . . ,Bk}, where Bk = |guek |B,

and U is henceforth the abstract state space. The number of abstract states is
|U | =

∏K
k=1 (1 + |guek |B), the maximum value being achieved when the numbers

of UEs in two UE groups differ from at most 1.

3.2 Approximated Solution

Assuming that a weight distribution ω : B −→ R+ is set on the classes of states,
i.e.,

∑
b∈φ−1 ω (b), the transition and the cost dynamics are transferred on U as:

P (u′ |u,a) =
∑

b∈φ−1(u)ω (b)
∑

b′∈φ−1(u′) P (b′ |b,a) and c (u,a) =
∑

b∈φ−1(u)ω (b)c (b,a) .

Each policy µ of the so defined MDP
(
U ,A, P , c

)
induces the policy π of the

ground MDP (B,A, P , c) defined by constant extrapolation, i.e., as π (s) = µ (φ (s)).
If µ is the optimal policy of

(
U ,A, P , c

)
, then π is a quasi-optimal policy of

(B,A, P , c).

3.3 Weight Distribution in Classes

Among many possibilities, we randomly select a representative state in each
class or we weight the states according to the similarity (or dissimilarity) in
their components. The idea behind this is to weight according to the extent
to which the groups of UEs are homogeneous. We examine the impact of the
following weight distributions:

Weighting the States after the UEs . We associate an N -tuple (ηi)
N
i=1 of co-

efficients (that need not sum to 1) with the UEs. This tuple induces a coef-
ficient coef

[η] (b) and a weight ω[η] (b) for each state of the MDP, defined as

coef
[η] (b) =

∑N
i=1ηibi and ω[η] (b) = coef

[η](b)∑
b′∈φ−1(φ(b)) coef

[η](b′)
. We chose the coeffi-

cients ηi in order to capture the similarity or the dissimilarity of the sizes of
queues of the same group at each time slot.

– To capture the similarity, we take the size, ηi = bi , or the closeness, ηi =

e

∣∣∣∣bi− 1
|guek |

∑
j∈guek bj

∣∣∣∣ between the UE and the average of its group. We call these
models respectively the UE-based empirical and the UE-based closeness
models.

– To capture the dissimilarity, we take the distance ηi =
∣∣∣∣bi − 1

|guek |
∑

j∈guek bj

∣∣∣∣
between the UE and the average of its group. We call this model the UE-
based distance model.

Directly Weighting the States . We associate each group of UEs with a coeffi-
cient coefk (b) that captures the similarity or the dissimilarity of the sizes of its
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members. Then, we aggregate the coefficients of each state and normalize all the
aggregated coefficients to obtain a weight ω defined as coef (b) =

∑K
k=1 coefk (b)

and ω (b) = coef(b)∑
b′∈φ−1(φ(b)) coef(b′) . We eventually need to normalize the values bi

to βi = bi∑
j∈guek bj

before the computation of the coefficient coefk (b). This nor-

malization is impossible if bi = 0 in all the group. This is, only one possibility
represents the group and, accordingly we assign it the coefficient coefk (b) = 0.

– To capture the similarity, among other indexes, we have the cosine similar-
ity calculated as the basis is the equal distribution in the group, equal (b)i =∑

j∈guek bj
|guek |

. Its value is : coefk (b) =
∑

i∈guek biequal(b)i√∑
i∈guek b

2
i

√∑
i∈guek equal(b)2

i

. We call this

weighting model the (state-based) cosine similarity model.
– To capture the dissimilarity, we perform the state-based: standard devia-

tion model with coefk (b) =

√∑
i∈guek

(
bi−equal(b)i

)2

∑
i∈guek bi

; cross entropy model with

coefk (b) = −
∑

i∈guek βi ln
(
equal (β)i

)
= ln |guek | ; and total difference with

the Gini index coefk (b) =
∑

i,j∈guek |bi−bj |
2|guek |

∑
i∈guek bi

.

Representative Selection . Another weighting model consists in choosing a
representative in each class, which is equivalent to assigning some member of
the class the weight value 1 and no weight to the other members. We do it either
randomly or on the basis of the above criteria. We name the first model random
representative selection, while the other models are the criterion-based repre-
sentative selection. We distinguish between the criterion-based one representative-
selection that consists in randomly selection a representative that maximizes
the underlined criterion, and the criterion-based all representative-selection
that equally weights all the representatives that maximize the underlined cri-
terion.

3.4 Results

We conduct several numerical evaluations to assess the performance of the pro-
posed abstractions5. Different simulations can be run in our available GitHub
Repository by changing the model parameters. In all cases, promising results
are obtained, significantly reducing the complexity of the problem, which trans-
lates into a notable reduction in execution times. Although an error analysis of
this approach is not performed, it is shown that the state abstraction works.

In particular, we work with a scenario composed of N = 4, B = 3, and M = 2,
solving the ground MDP using the classical value iteration algorithm and ob-
tained the precise solution and the optimal policy. Additionally, we explore

5 All simulations were performed using an Intel Core i7, 11th Generation, 8-core, 2.8
GHz processor with 32 GB of RAM
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different aggregations; Table 1 summarizes the results obtained by setting the
number of groups to two. Each abstraction model (each row in table 1) is char-
acterized by the number of states selected in each class (select_mode: one top-
weighted state, the top-weighted states, or all states), the criteria used to weight
the states (groups or UEs), the rule determining the state weights (uniform
distribution, similarity, or dissimilarity), and the variant (standard deviation,
cross entropy or Gini coefficient) of this rule when the items receiving coef-
ficients were groups and the rule referred to dissimilarity. Then, columns six
and seven indicate the maximum differences between the precise and approxi-
mated solutions, as well as the greatest divergences between the exact and ap-
proximated optimal policies. The table also presents the resolution times and
abstraction times, and it indicates in the last column the percentage of the res-
olution time (including the extrapolation time) relative to the resolution time
of the ground model.

Table 1: Comparison of abstraction models. Parameters: N = 4, B = 3, M = 2 and
γ = 0.9. The precision for each MDP resolution was set to 10−16. Cost function
parameters x = y = α = β = 1. % of total_resolution_time is the percentage
relative to the resolution time of the ground model.
ID coef_owners coef_criterion criterion_variant select_mode max_diff_values max_diff_actions abstraction_time resolution_time extrapolation_time % of total_resolution_time
1 UEs uniform – one 7.516 15 18.680 4.786 0.002 27.363
2 UEs uniform – top 10.350 15 19.097 5.104 0.006 29.201
3 UEs uniform – all 10.350 15 19.041 5.125 0.003 29.301
4 UEs sim – one 10.380 10 19.292 4.826 0.002 27.592
5 UEs sim – top 10.793 15 21.690 5.788 0.003 33.089
6 UEs sim – all 8.871 15 21.032 5.015 0.003 28.671
7 UEs dissim – one 24.059 15 20.001 5.169 0.004 29.558
8 UEs dissim – top 17.482 15 21.510 6.980 0.003 39.905
9 UEs dissim – all 14.713 15 30.658 7.856 0.010 44.950

10 groups uniform – one 9.000 15 26.170 5.122 0.003 29.283
11 groups uniform – top 10.350 15 20.800 5.414 0.003 30.956
12 groups uniform – all 10.350 15 25.976 7.309 0.003 41.783
13 groups sim – one 13.111 12 26.534 5.331 0.003 30.479
14 groups sim – top 10.793 15 21.121 5.397 0.004 30.864
15 groups sim – all 9.981 15 24.329 7.064 0.006 40.396
16 groups dissim sd one 13.770 15 28.580 5.554 0.003 31.750
17 groups dissim cross one 11.839 15 21.104 5.539 0.003 31.670
18 groups dissim gini one 8.424 15 21.075 5.354 0.003 30.608
19 groups dissim sd top 17.482 15 21.782 6.519 0.004 37.272
20 groups dissim cross top 10.350 15 29.282 7.550 0.003 43.162
21 groups dissim gini top 17.482 15 26.261 5.403 0.003 30.888
22 groups dissim sd all 14.765 15 20.632 5.367 0.005 30.702
23 groups dissim cross all 10.350 15 20.749 6.982 0.004 39.918
24 groups dissim gini all 14.765 15 25.828 7.118 0.003 40.697

Within this set of possible abstractions for the given problem, the first row
of the table, corresponding to an abstraction where the coefficients are associ-
ated with the UEs and a uniform distribution is used, appears to be the best
option in terms of resolution time and proximity to the optimal solution. The
results show that for this abstraction, the resolution time is 27.3 % of the reso-
lution time of the original MDP. This underscores the motivation to pursue this
approach and achieve its utilization for near real-time decision-making.

4 Conclusions

In this work, we studied a radio resource allocation system modeled using a
Markov Decision Process (MDP). Various weighted abstractions of state spaces
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in MDP were presented, and simulations were conducted to compare the per-
formance of each model against the original. The results demonstrate the po-
tential of these abstractions in efficiently solving complex MDPs. For future
work, we plan to explore more complex scenarios and utilize our abstractions
to enhance the performance of artificial intelligence algorithms. Additionally,
a more detailed analysis of the approximation error is necessary. Our work in
progress include the combination of state and action spaces abstraction for
a faster resolution. This allows accounting the variable numerology, variable
Channel Quality Indicator (CQI) over time to emulate mobile users, and other
factors that reflect real-world conditions more accurately. Our goal to come out
with an efficient online optimization resource allocation in 5G and B5G net-
works.
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