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Abstract. We analyze a system in which in each time slot one cus-
tomer and one server arrive at the system according to a random pro-
cess. Compatibilities between customers and servers are determined by
a bipartite graph. An incoming customer (resp. server), if it finds a com-
patible server (resp. customer), they are matched and both leave the
system. Otherwise, they are stored in a queue. We investigate the im-
pact on the expected value of the unmatched customers and servers when
we remove an edge from the compatibility graph. For a quasicomplete
graph and a large family of matching policies, we provide necessary and
sufficient conditions on the probability distribution of the arrivals such
that a performance paradox occurs, i.e., such that removing an edge of
the compatibility graph improves the performance of the system. This
phenomenon can be seen as an analog of the Braess paradox in bipartite
matching models.
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1 Introduction

We are interested in studying the performance of dynamic bipartite matching
models. In these models, in each time slot, exactly one customer and one server
arrive at the system. Compatible customer and server pairs are matched, in
which case they leave the system. However, if upon arrival a customer (resp.
server) does not find a compatible server (resp. customer) to be matched with,
they wait in a queue.

To the best of our knowledge, the author in [10] is the first to study the
dynamic bipartite matching model. In that work, the process of public housing
in Boston is explored by considering that, upon the availability of a house, it is
assigned to the longest family waiting for this kind of residence. The interest of
[10] is the fraction of families having the same preferences that are assigned to a
specific housing project, i.e., the matching rate. Later, an important contribution
is given in [7], which introduces the First Come First Served infinite matching
bipartite model. In this problem, a connected bipartite graph is defined, where
nodes represent the class of incoming elements and the edges their compatibili-
ties. As the compatibility graph is bipartite, the set of nodes can be separated
into two parts: customer nodes and server nodes. Given the large number of
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applications, for instance in call centers [8], many researchers have investigated
this model. For instance, in [1], they characterize the necessary and sufficient
conditions for the ergodicity of the Markov chain derived from this model and
also show that the steady-state distribution has a product form expression. The
authors in [2] consider other matching policies such as Last Come First Served,
Random, or Priorities and study the stability condition for these cases. The bi-
partite matching models can be seen as a generalization of multi-skilled queueing
networks in which customers and servers arrive randomly to the system (see [9]
for a recent review of queueing systems with compatibilities).

There has been a recent interest of researchers in studying an alternative
matching model in which the graph that describes the compatibilities is not bi-
partite. In this case, the arrivals of elements in the system are one by one. This
variant is introduced by [11]. In [12], it is proven that the steady-state distribu-
tion of elements for this model under the First Come First Matched policy (which
matches a customer with the oldest compatible server and servers with the old-
est compatible customer) has a product-form expression. Using this result, the
authors in [6] study the influence of adding an edge to the compatibility graph
and conclude that, when flexibility in the compatibility graph increases and un-
der the First Come First Matched policy, there exists a performance paradox in
which the expected value of the number of unmatched items can increase. This
result is generalized in [2] to greedy matching policies, which is a large family of
matching policies that include First Come First Matched among others.

In this work, we address the following question: does the performance para-
dox of [6, 2] also occur in bipartite matching models? We consider a dynamic
matching model with an arbitrary number of customer classes and two types
of servers and a compatibility graph which consists of a quasicomplete graph.
This means that all the customer and server pairs are compatible except for one.
We consider a family of matching policies that prioritize previously unmatched
items to match the incoming customer and server pairs. We first provide an
analytical expression of the expected value of the total number of unmatched
customers and servers in a matching model with a quasicomplete compatibility
graph. Then, we remove one edge from the previously considered compatibil-
ity graph and we study the expected value of the total number of unmatched
customers and servers. Using the derived expressions, we find a parametrized
family of arrivals and, for this instance, we provide a necessary and sufficient
condition for the existence of the performance paradox. We also show that the
difference on the performance of both matching models when the performance
paradox occurs is unbounded from above. This means that the degradation due
to adding flexibility to a matching model can be arbitrarily large.

The rest of the article is organized as follows. We describe the model under
study in section 2 as well as the assumptions we make. Then, in Section 3, we
present the main results of our work concerning the performance paradox in
bipartite matching models. Finally, the main conclusions and the future work
are described in Section 4. For the sake a readability, some of the proofs have
been reported to the Appendix.
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2 Model Description

2.1 Bipartite Matching Models

We consider a system with multiple types of customers and servers in discrete
time. In each time slot, one customer and one server arrive at the system. The
set of customers classes is C = {c1, . . . , cm} and the set of servers classes S =
{s1, . . . , sn}. We denote by αi (resp. by βj) the probability that a customer
of type ci (resp. a server of type sj) arrives at the system in a time slot. We
assume independence of the arrivals of customers and servers. As a consequence,
a customer of type ci and a server of type sj arrive at the system in a time slot
with probability αiβj . Also,

∑m
i=1 αi = 1 and

∑n
i=1 βi = 1.

s1 s2 s3

c1 c2 c3

β1 β2 β3

α1 α2 α3

Fig. 1. A compatibility graph with three customer classes and three server classes.

We say that customers of type ci are compatible with servers of type sj when
the customers of type ci can be executed in a server of type sj . Compatible cus-
tomers and servers can be matched, in which case they disappear immediately;
otherwise, they are stored in a queue. The compatibility between customers and
servers is modeled as a bipartite graph (C ∪ S, E), where E ⊂ C × S represents
the set of compatible pairs of servers and customers. See Figure 1 for an example
with m = n = 3.

The matching policy determines how compatible customers and servers are
matched. An example of a matching policy is the First-Come-First-Matched
discipline, in which an incoming customer is matched with the oldest compatible
server (and, likewise, an incoming server is matched with the oldest compatible
customer).

Example 1. Consider the compatibility graph depicted in Figure 1 and the First-
Come-First-Served matching policy. The system is initially empty. Let us con-
sider that a customer of type c3 and a server of type s2 arrive at the system.
Since the arriving customer and server are not compatible, they are stored in a
queue. If, in the next time slot, the incoming customer is of type c2 and the in-
coming server is of type s1, the server of type s2 is matched with the customer of
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type c2 and the server of type s1 is stored in the queue, leading to a situation in
which there is one the customer of type c3 and one server of type s1 unmatched.

2.2 Performance Paradox

A bipartite matching model is formed by the triple (G, (α,β), ψ), where G is
the compatibility graph, (α,β) is the probability distribution of arrivals of cus-
tomers and servers and ψ is the matching policy under consideration. For a
given matching model, the number of unmatched customers and servers of the
derived matching model is a Markov chain. This Markov chain will be denoted by
M(G, (α,β), ψ) in the following. Let E[M(G, (α,β), ψ)] be the expected value
of the total number of unmatched customers and servers.

In this work, we study the impact on the mean number of customers when we
remove an edge (ci, sj) from the compatibility graph. To this aim, we consider
a compatibility graph G − (ci, sj), which consists of the compatibility graph G
without the edge (ci, sj). We denote by M(G − (si, cj), (α,β), ψ) the Markov
chain derived from this matching model and by E[M(G− (ci, sj), (α,β), ψ)] the
expected value of the mean number of customers and servers for this case.

We say that there exists a performance paradox in a matching model when

E[M(G, (α,β), ψ)] > E[M(G− (ci, sj), (α,β), ψ)].

From the above expression, we have that there exists a performance paradox
in a matching model if adding an edge to the compatibility graph increases the
expected value of unmatched customers and servers.

2.3 Assumptions

Let us present the following assumptions we make in this work.

Assumption 1 (Stability) We assume that the arrivals satisfy the following
condition: ∀C ⊆ C ∀S ⊆ S∑

ci∈C

αi <
∑

si∈S(C)

βi and
∑
si∈S

βi <
∑

ci∈C(S)

αi, (1)

where S(C) is the set of server types that are compatible with one of the customer
types of C and C(S) is the set of server types that are compatible with one of the
customer types of S. According to [5], the above expression provide a necessary
and sufficient condition for the stability of the matching model for the First-
Come-First-Matched policy.

Assumption 2 (Compatibility graph) We consider a compatibility graph which
is a quasicomplete bipartite graph. This means that all but one of the customer
and server pairs is compatible. We also assume that there is an arbitrary number
of customer classes such that m > 2 and n = 2 server classes. Without loss of
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generality, we assume that customer class c1 and server class s2 are not compat-
ible. This compatibility graph will be denoted as K[2,m] − (c1, s2). The stability
condition of (1) for this Markov chain is given by

α1 < β1. (2)

In our performance paradox analysis, we assume that the edge we remove
from the compatibility graph is (ci, sj) where i ̸= 1 and j ̸= 2. That is, the edges
(c1, s2) and (ci, sj) do not have any node in common. Without loss of generality,
we assume that (ci, sj) = (cm, s1). This compatibility graph will be denoted as
K[2,m] − {(c1, s2), (cm, s1)}. The stability condition of (1) for this case is given
by

α1 < β1 and αm < β2. (3)

Assumption 3 We assume that the matching policy is such that, upon arrival
of one customer and one server that are compatible, the matching priority is
given to customers and servers that have not been previously matched (i.e. the
incoming customers and servers are not matched even though they are compat-
ible if there are other compatible customers and servers in the system). This
family of matching policies includes First Come First Matched, and MaxWeight,
which maximizes the number of matching at any time. This family of matching
disciplines will be denoted as D.

3 Performance Paradox Analysis

The main result of this work consists of providing a necessary and sufficient
condition such that the performance paradox exists, i.e., such that

E[M(K[2,m]−(c1, s2), (α,β), D)] > E[M(K[2,m]−{(c1, s2), (cm, s1)}, (α,β), D)].

We first focus on M(K[2,m] − (c1, s2), (α,β), D). In the following result, we
characterize this Markov chain and we provide an expression of E[M(K[2,m] −
(c1, s2), (α,β), D)]. The proof of this result is reported in Appendix A.

Lemma 1. The Markov chain M(K[2,m] − (c1, s2), (α,β), D) is a birth-death
process with birth probability equal to λ1 = α1β2 and death probability µ1 =
(1− α1)β1. Therefore, if ρ1 = λ1/µ1, we have that ρ1 < 1 and

E[M(K[2,m] − (c1, s2), (α,β), D)] =
2ρ1

1− ρ1
.

We now focus on M(K[2,m] − {(c1, s2), (cm, s1)}, (α,β), D). In the following
result, we characterize this Markov chain and provide an analytical expression
of E[M(K[2,m] − {(c1, s2), (cm, s1)}, (α,β), D)]. The proof of this result can be
found in Appendix B.
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Lemma 2. The Markov chain M(K[2,m]−{(c1, s2), (cm, s1)}, (α,β), D) is formed
by two birth-death processes which are connected by the state of the empty system.
The birth probability and death probability of one of them are, respectively, λ1 and
µ1 (which have been defined in Lemma 1), whereas for the other birth-death pro-
cess the birth probability is λ2 = αmβ1 and the death probability µ2 = (1−αm)β2.
Therefore, if ρ1 = λ1/µ1 and ρ2 = λ2/µ2, we have that ρ1 < 1 and ρ2 < 1 and

E[M(K[2,m] − {(c1, s2), (cm, s1)}, (α,β), D)] =

2(1− ρ1)(1− ρ2)

1− ρ1ρ2

(
ρ21

(1− ρ1)1
+

ρ22
(1− ρ2)1

)
.

From the above results, we conclude that there exists a performance paradox
when

2(1− ρ1)(1− ρ2)

1− ρ1ρ2

(
ρ21

(1− ρ1)2
+

ρ22
(1− ρ2)2

)
>

2ρ1
1− ρ1

. (4)

We now consider the following probability distribution for the arrivals of the
customer types: α1 = 0.45, αi = 0.1

m−2 , for i = 2, . . . ,m − 1 and αm = 0.45.
For the arrivals of server types, we consider the following parametrized family
of probability distributions: β1 = 0.5 + δ and β2 = 0.5 − δ. We assume that
δ ∈ (0, 0.05), which case (2) and (3) are satisfied, as it can be seen here:

α1 = 0.45 < 0.5 + δ = β1 and α3 = 0.45 < 0.5− δ = β2.

For these values and after some simplifications, we get that

ρ1 =
9

11

0.5 + δ

0.5− δ
, ρ2 =

9

11

0.5− δ

0.5 + δ
.

It is easy to check that, when δ ∈ (0, 0.05), ρ1 < 1 and ρ2 < 1. From the
above results, we have that

2(1− ρ1)(1− ρ2)

1− ρ1ρ2

(
ρ21

(1− ρ1)1
+

ρ22
(1− ρ2)1

)
=

99

10

1 + 400δ2

1− 400δ2
, (5)

and
2ρ1

1− ρ1
=

9(1 + 2δ)

1− 20δ
. (6)

Using the above formulas, we characterize the existence of a performance
paradox in this matching model in the following theorem.

Theorem 1. In the above matching model, there exists a performance paradox
if and only if δ ∈ (0.005, 0.05).
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Proof. We aim to determine the values of δ such that (4) is satisfied. According
to (5) and (6), we have that

9(1 + 2δ)

1− 20δ
>

99

10

1 + 400δ2

1− 400δ2
⇐⇒ 9(1 + 2δ) >

99

10

1 + 400δ2

1 + 20δ

⇐⇒ 90(1 + 2δ)(1 + 20δ) > 99(1 + 400δ2)

⇐⇒ (90 + 180δ)(1 + 20δ) > 99 + 39600δ2

⇐⇒ 90 + 180δ + 180δ2 + 3600δ2 > 99 + 39600δ2

⇐⇒ 3600δ2 − 1980δ + 9 < 0

⇐⇒ 3600

(
δ − 1

20

)(
δ − 1

200

)
< 0.

The last expression is only true when 1
200 < δ < 1

20 , which proves that the
desired result follows.

The intuition behind the above result is the following. When we remove the
edge (cm, s1) of the compatibility graph, upon arrival of one customer of type c1
and one server of type s2, the former can be matched with a server of type s1
and the latter with a customer of type cm. We remark that this is not possible
if the edge (cm, s1) would belong to the compatibility graph since they would
be previously matched (and therefore, they could not be matched with a server
of type s1 and a customer of type cm). A similar phenomenon has been also
observed recently in non-bipartite matching models in [2, 6]. Our work shows
that the performance paradox occurs also in bipartite matching models.

Finally, we show that the degradation due to the existence of the performance
paradox can be arbitrarily large.

Theorem 2. When δ → 0.5−, then

E[M(K[2,m] − (c1, s2), (α,β), D)]−E[M(K[2,m] − {(c1, s2), (cm, s1)}, (α,β), D)]

tends to infinity.

Proof. We note that, from (5) and (6), the desired result follows if we show that

9(1 + 2δ)

1− 20δ
− 99

10

1 + 400δ2

1− 400δ2
,

tends to infinity when δ → 0.05−.
From the above expression, using that δ = 0.05− x, we get the following:

9.1− 18x

20x
− 198− 3960x+ 39600x2

20x(20− 200x2)
,

or equivalently

9.1− 18x)(20− 200x2)− (198− 3960x+ 39600x2)

20x(20− 200x2)
.
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We simplify the last expression and it results:

−900x2 + 445x− 4

5x(20− 200x)
.

We note that, when x → 0+, the numerator of the above ratio tends to -4,
whereas the denominator to +∞. This implies that the above ratio tends to
infinity when x→ 0+. And the desired result follows.

4 Conclusions and Future Work

We have studied the existence of a performance paradox in dynamic bipartite
matching models. More precisely, we have considered a quasicomplete compati-
bility graph, an arbitrary number of customer classes and two server types, and
we provide necessary and sufficient conditions on the arrivals of customers and
servers such that the performance paradox exists. This work extends the per-
formance paradox analysis of matching models with non-bipartite compatibility
graphs of [2, 6] to bipartite matching models.

For future work, we are interested in analyzing the existence of the perfor-
mance paradox in bipartite matching models with more complex compatibil-
ity graphs (for instance, more sparse compatibility graphs or with an arbitrary
number of server classes). We would also like to analyze the existence of a per-
formance paradox in other matching models such as in multigraphs [3] or in
matching models with self-loops [4].
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A Proof of Lemma 1

We consider the Markov chain M(K[2,m] − (c1, s2), (α,β), D). We assume that
the system is empty. In each time slot, one customer and one server arrive at
the system. If the incoming server is of type s1, it is matched with the incoming
customer since servers of class s1 are compatible with all the customer classes.
Likewise, if the incoming server is of type s2 and the incoming customer of class
ci, with i ̸= 1, they are matched. When the incoming server is of type s2 and
the incoming customer is of type c1, they are not compatible, therefore they are
stored in a queue. This occurs with probability α1β2.

Assume now that there are k customers of type c1 and k servers of type s2
in the queue. With probability α1β2, one customer of type c1 and one server of
type s2 arrive at the next time slot. In this case, since the arriving elements are
not compatible, the number of unmatched customers and servers gets increased
by one. With probability (1 − α1)β1, one customer of type ci, with i ̸= 1, and
one server of type s1 arrive at the system, in which case, taking into account
the matching policies under consideration (see Assumption 3), the incoming
customer is matched with one server of type s2 and the incoming server with one
customer of type c1. Therefore, the number of unmatched customers and servers
decreases by one. In the rest of the cases, the incoming server and customer are
matched, which implies that the number of unmatched customers and servers
remains unchanged.

The above argument shows that the number of unmatched customers is a
birth-death process in which the birth probability is λ1 = α1β2 and the death
probability is µ1 = (1 − α1)β1. We now show that ρ1 = λ1/µ1 is smaller than
one:

α1β2
(1− α1)β1

< 1 ⇐⇒ α1 < β1,

and the last expression is true due to the stability condition (2).
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As a result, the steady-state probability of being k customers of type c1
unmatched in the system is (1 − ρ1)ρ

k
1 . Therefore, we have clearly that the

expected number of unmatched customers of class c1 is ρ1

1−ρ1
. Using the same

reasoning, we derive that the expected value of the number of unmatched servers
of class s2 is ρ1

1−ρ1
. As a consequence, the expected value of the total number of

unmatched servers and customers is 2ρ1

1−ρ1
. And the desired result follows.

B Proof of Lemma 2

We consider the Markov chain M(K[2,m] − {(c1, s2), (cm, s1)}, (α,β), D). One
can use the same arguments as in Appendix A to conclude that two birth and
death processes form the Markov chain; one with the same birth and death
process as in Appendix A and the other with birth probability λ2 = αmβ1 and
death probability µ2 = (1−αm)β2. Thus, if π0 is the normalization constant, the
steady-state probability of being k customers of class c1 and k servers of class
s2 is π0ρk1 , whereas the steady-state probability of being k customers of class c1
and k servers of class s2 is π0ρk2 , where ρ2 = λ2/µ2. We know from Appendix A
that ρ1. We now show that ρ2 < 1 as follows:

ρ2 =
αmβ1

(1− αm)β2
< 1 ⇐⇒ αm < β2,

and the last expression is true because of the stability condition (3). Therefore,
we compute the value of the normalization constant as follows:

π0

1 +

∞∑
i=1

ρi1 +

∞∑
j=1

ρj2

 = 1 ⇐⇒ π0 =
(1− ρ1)(1− ρ2)

1− ρ1ρ2
.

From the above reasoning, we conclude that the expected value of unmatched
customers is given by

π0

 ∞∑
i=1

iρi1 +

∞∑
j=1

jρj1

 =
(1− ρ1)(1− ρ2)

1− ρ1ρ2

(
ρ21

(1− ρ1)2
+

ρ22
(1− ρ2)2

)
.

And the expected value of unmatched servers is also given by the above expres-
sion. Therefore, the desired result follows.


