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Abstract. We study a model of auction representative of the 5G auc-
tion in France. We determine the optimal strategy of a bidder, assuming
that the valuations of competitors are unknown to this bidder and that
competitors adopt the straightforward bidding strategy. Our model is
based on a Partially Observable Markov Decision Process (POMDP). We
show in particular that this special POMDP admits a concise statistics,
avoiding the solution of a dynamic programming equation in the space
of beliefs. We illustrate our results by numerical experiments, comparing
the value of the bidder with the value of a perfectly informed one.
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1 Introduction

1.1 Context
The acquisition of frequency spectrum is a vital aspect for telecommunica-

tions companies, as their core operations and success rely on these resources.
Spectrum auctions have emerged as a prominent method for allocating these
valuable resources. They have undergone significant evolution since their intro-
duction, with various auction models being employed over time [15]. Initially,
sealed-bid auctions were the preferred method for allocating spectrum rights. In
this model, bidders would submit their bids simultaneously without knowing the
bids of their competitors, the highest bidder winning the auction. However, this
model was found to have limitations. For example, in auctions with several fre-
quency bandwidths at stake (which is usually the case), bidders ended up paying
very different amounts for the same goods (see page 8 of[13]). To address these
limitations, auction models have evolved to accommodate more complex scenar-
ios. One notable development was the introduction of combinatorial auctions,
which allow bidders to bid on packages of items rather than individual items [8].
This innovation significantly improved the efficiency of spectrum allocation by
enabling bidders to express their preferences for specific combinations of spec-
trum licenses. Among the various combinatorial auction formats, the combinato-
rial clock auction (CCA) has emerged as a popular choice for spectrum auctions.
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The CCA combines the advantages of the clock auction, where prices increase in
rounds until demand equals supply, with the flexibility of combinatorial bidding.
This format allows bidders to adjust their bids in response to changing prices,
while also considering complementarities and substitutabilities. When the li-
censes present no complementarities, simplified CCA are implemented. In those
cases, bidders can only bid on the number of items they want to acquire rather
than the exact bundle of items. This type of auction was used as part of the 5G
Auctions in France in 2020 [1]. In this context, [14,15] provide an introduction
to auction theory. [12] further explores this issue, suggesting that there may not
be a universally truthful strategy for CCA.

The evolution of spectrum auctions has also been motivated by the matter
of optimality which can be defined differently: it could be to maximize rev-
enue for the auctioneer [16], to maximize the fairness of the auction [11] or to
maximize one player’s profit selfishly. One way it has been studied is through
prophet inequalities, which are inequalities between a strategic allocation and
the optimal allocation. Those inequalities are widely studied in the literature for
different forms of bidder’s preference but almost always in a mechanism design
perspective, so as to maximize social welfare [9,10]. However, few have studied
the question of optimality in a competitive auction where a player wants to
selfishly maximize its own utility. An example of such a study can be found in
[2] which proposes a Mixed Linear Integer Programming approach in a perfect
information setting. Nonetheless, the perfect information setting case presents
a difficulty: companies do not disclose their valuation to their competitors in
order to keep a competitive edge. As a matter of fact, such valuations can yield
strategic information on a company’s long-term projects. Thus, we can only have
some coarse estimates of the opponent valuations, noting that data are gener-
ally insufficient to infer such estimations [1]. Hence, more practical approaches in
imperfect information setting are used such as Partially Observable Markov De-
cision Processes (POMDP). In [4], this framework is used for inferring the utility
of each player. Those models have been rare for modelling auction competition.
One of the possible reasons is that such model requires to make assumptions
on the behavior of competitors. A commonly studied behaviour is the Straight-
forward Bidding (SB) introduced by [13]. It is characterized by its focus on
immediate gains without considering future implications. As a matter of fact, [6]
models an ad auction among SB players and [17] uses it as a baseline strategy
to rate its agents. This strategy has been at the heart of studies mainly because,
despite its simplicity, it can be optimal in various situations. For instance, SB is
proven to be a weakly dominant strategy in auctions of 1 item [3]. Moreover, if
each bidder demands a single item and has no preference for any of them, SB is
a Bayes-Nash equilibrium [19]. What is more, this strategy yields to a situation
comparable to a competitive equilibrium when the goods are substitutes for all
bidders [13], which is the case for the 5G auction we study [1].

This paper aims to explore what could be the optimal response against SB
opponents for a bidder taking part in a simplified CCA such as the French
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5G auction. Indeed, the SB strategy is interesting as it is a simple yet efficient
strategy [5] for the auction at hand.

1.2 Contribution
We introduce a POMDP formulation for clock auctions from the point of view

of one player against a single straightforward agent. We justify this assumption
by proving that several straightforward agents can be aggregated in this type
of auction. Our main result (Theorem 1) provides a simplified expression of the
optimal policy under some assumptions on the distribution of the opponents’
preferences. It shows that the optimal solution of the POMDP coincides with a
strategy with concise expression avoiding the recourse to the belief state. Lastly,
we explore the results of the optimal strategy when the theorem holds and show
empirical evidence of its performance.

The paper is organized as follows : Section 2 presents the studied auction, the
SB strategy and how it is modelled in the rest of the paper. Section 3 provides
an optimal strategy to bidding in the modelled auction and introduces the main
theorem of simplification. Lastly, Section 4 applies those results to simulated
auctions allowing one to compare the performance of this bidding strategy to
the one of a perfectly informed bidder.

2 5G auction in France

2.1 Auction mechanism
We model an auction amongst n players for m items inspired by the clock

auction held for the 5G auction in France in 2020 [1]. We denote each player by
an integer i ∈ {1, . . . , n}. The auction begins at a certain price Pinit ⩾ 0. A price
increment ∆P > 0 between successive rounds is fixed in advance. The auction
mechanism is the following:
1. The auction starts at price Pinit, we set P ←− Pinit
2. Each player i asks for a number of items di(P ). This is her demand or bid.

All demands are simultaneous.
3. We check if the total demand does not exceed the number of items, i.e. if∑n

i=1 di(P ) ⩽ m:
– If it is the case, the auction terminates and each player i receives di(P )

items and pays di(P )× P .
– Otherwise, the price is raised, P ←− P +∆P , and the auction moves to

the next round (resuming from step 2).
Moreover, the auction presents an eligibility rule: it is mandatory for player i’s
demand to be non-increasing, i.e. ∀P ⩾ 0, di(P +∆P ) ⩽ di(P ).

This auction presents both public information and private information:
– The demand of each player is revealed at the end of the round. At round
t, the past demands are public information, i.e. {di(Pinit + s∆P )|0 ⩽ s <
t, i = 1, . . . , n} is known by all players.

– Each player i has a budget Bi. This is a private information. Every player is
under a budget constraint : one’s payment cannot exceed one’s private budget.
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We model the preferences of each player i by a private valuation function
vi : {0, . . . ,m} −→ R+. This valuation represents a maximal price that the player
i is willing to pay for k items. It is also private information. Furthermore, we
introduce the utility ui(k, P ) = vi(k)−kP . Each agent i wants to maximize this
utility within the constraints of the auction. The following result is immediate.

Proposition 1. The eligibility rule and the budget constraint ensure the auction
terminates. The number of rounds R is bounded by:

R ⩽ ∆P−1
(

max
1⩽i⩽n

(
max

1⩽k⩽m

vi(k)

k

)
− Pinit

)
.

Hence, during the auction, only a finite number of prices are observed, namely
P = {Pinit + k∆P |k ∈ {0, . . . , R}}.

2.2 Straightforward bidding
In our study, we suppose all but one player play according to a strategy

called Straightforward Bidding (SB) [13]. This strategy is a myopic strategy:
it consists in maximizing one’s utility at each round, as if the auction would
terminate immediately. The player handles possible tie breaks by taking the
lowest number of items that maximizes her utility. In our case in which there is
a single type of items, SB can be formulated as follows.

Definition 1. The player i is said to be playing SB if

∀P ⩾ 0, di(P ) = min
(
argmax
0⩽k⩽m

{vi(k)− kP}
)

One can notice that in Definition 1, di only depends on the map P ⩾ 0 7→
max0⩽k⩽m{vi(k)− kP}. This is precisely the Legendre-Fenchel transform of vi
(up to a change of sign), restricted to the non-negative real numbers. Hence,
di only depends on the non-decreasing concave hull of the private valuation vi.
This is formalized by the following result.

Proposition 2. Suppose player i plays according to SB. Let

v̆i = inf{f : {0, . . . ,m} → R | f is non decreasing, concave and f ⩾ vi}

and for all P ⩾ 0, define d̆i(P ) = min
(
argmax0⩽k⩽m{v̆i(k)− kP}

)
. Then,

1. for all P ⩾ 0, we have di(P ) = d̆i(P ).
2. Let k0 ∈ {1, . . . ,m − 1} such as there exists P ∈ P satisfying di(P ) = k0.

Then, vi is locally strictly concave in k0 (meaning vi(k0) − vi(k0 − 1) >
vi(k0 + 1)− vi(k0)). Moreover, for such a k0, v̆i(k0) = vi(k0).

Hereafter, we will model the valuation of an SB agent as a concave and
non-decreasing function.

Corollary 1. Suppose player i plays according to SB. If her valuation is normal-
ized, i.e. vi(0) = 0, we can model it by a valuation of the form vi(k) =

∑k
j=1 zj

where z1 ⩾ z2 ⩾ . . . ⩾ zm ⩾ 0 and in this case, di(P ) =
∑m

j=1 1(zj − P > 0).
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For the sake of simplicity, we will consider a modified two-players auction. This
reduction is without loss of modelling power thanks to the following result.

Proposition 3. A clock auction between a player J1 and n− 1 SB players can
be identified to a clock auction between J1 and 1 super SB-player from the point
of view of J1, in the sense that, for every strategy σ of J1 in either auction, there
exists a strategy σ′ in the other one such as her bid is the same at each round
and her final utility is the same.

This result allows us to consider a super player e.g. an aggregated player of
demand function δ(p) =

∑n−1
i=1 δi(p) where δi is the demand function of the SB

player i. It can be seen as a super SB-player by reordering the random variable
(Z

(i)
j )1⩽j⩽m of every player i.

2.3 Scope of the study
Our goal is to find a strategy for the non-SB player in the auction. In the rest,

we call the Straightforward super player the opponent and the non-SB player the
player. The latter’s private valuation is noted v.

We model the opponent’s valuation as a random variable V (k) =
∑k

j=1 Zj

with (Zj) random non-negative variables of known distribution. The (Zj) must
verify Z1 ⩾ . . . ⩾ Z(n−1)m almost surely (a.s.). We note her demand function
δ(p) =

∑(n−1)m
j=1 1{Zj > p} which is viewed as a random process. As mentioned

before, the (Zj)1⩽j⩽(n−1)mis a reordering of n − 1 sequences (Zi
j)1⩽j⩽m which

verify Zi
1 ⩾ . . . ⩾ Zi

m almost surely (a.s.) for all i ∈ {1, . . . , n− 1}.
In a perfect information setting i.e. when the opponent’s valuation is public,

the optimal policy comes naturally:

Proposition 4. Against an SB player, the optimal policy for player i is given
by the optimization problem :

max
k∈{0,...,m}

p∈P

(v(k)− kp)1(k + δ(p) ⩽ m) ,

where P = {Pinit + r∆P | 0 ⩽ r ⩽ maxk∈{1,...,m}
v(k)−Pinit

∆P }.

Since the player knows the opponent’s bid at every price, she can decide the
moment the auction ends by adapting her own bid. As a matter of fact, since
p 7→ v(k) − kp is decreasing in p for k > 0 and is null for k = 0, the maximum
is necessarily attained at pk = inf{p ∈ P : δ(p) + k ⩽ m} for a certain k and
is non-negative. An optimal strategy for such an oracle player is to bid the k
that maximizes v(k)−kpk. Since this result is immediate, the literature primarily
examines scenarios where the opponent’s valuation is either unknown or revealed
through signaling during the auction [9,10].

The following section formally introduces the optimization problem regarding
the player’s strategy.
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3 Bellman equation

3.1 POMDP
We model the situation as a Partially Observable Markov Decision Process

(POMDP):

Definition 2. We denote by S the state space. The state st = (t, pt, kt, ωt) at
time t is defined by:
– t ⩾ 0 is a discrete time, it can be interpreted as the round of the auction.
– pt ∈ P is the price at round t. The price dynamics is given by p0 = Pinit

and ∀t ⩾ 0, pt+1 = pt +∆P .
– kt ∈ {0, . . . ,m} is the player’s bid at round t− 1.
– ωt is the choice of nature for the opponent’s valuation during the auction.

We suppose that ∀t ⩾ 0, ωt+1 = ωt meaning that the opponent’s valuation
does not change during the auction.

We denote by O the set of observations. The observation at time t is given
by ot = (t, pt, kt, δt−1) ∀t ⩾ 0, where δt = δ̄(ωt, pt) is the opponent’s bid at
round t (δ̄ is a deterministic function). Let δ−1 be any initial conditional. Let
k0 := argmaxk∈{0,...,m}(v(k) − kPinit). From these observations, at round t,
the player takes an action ut = σt((os, us)0⩽s⩽t−1, ot) ∈ {0, . . . ,m} with σt a
measurable function and ut ⩽ kt. The sequence (σt)t⩾0 is called an admissible
strategy. The state following the action ut satisfies kt+1 = ut.

The action u causes the state to change from s to s′ with probability T (s′|s, u).
As a matter of fact, in this model, all transitions are deterministic:

T ((t′, p′, k′, ω′) | (t, p, k, ω), u) =

{
1 if ω′ = ω, k′ = u, t′ = t+ 1, p′ = p+∆P

0 otherwise

However, the initial state s0 is supposed to be random because ω0, the unknown
nature’s choice, is viewed as a random variable.

We will note O(o′|s′, u) the probability with which the player observes o′
when reaching state s′ after taking action u.
Optimization problem The problem is to maximize the player’s expected
value. Our goal is thus to find an optimal admissible strategy i.e. optimize with
regards to σ

maximize E[v(kT )− kT pT ]
where T = inf{t ⩾ 0 | δt + kt ⩽ m} (termination condition)

(1)

We introduce the belief state bt which is the distribution of the current state
conditionally to the history. Thus, bt = P(st|ot, (ut−1, ot−1), . . . , (u0, o0)). Since
the decision of the player and the termination condition depend on the last
observation, a sufficient statistics of the POMDP includes not only the belief
but also the last observation ot.
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Proposition 5. The optimal value of Problem 1 is given by the Bellman equa-
tion in which o = (t, p, k, δ) with t ⩾ 0 and b denotes the belief:

ψ(o, b) =

v(k)− k(p−∆P ) if k + δ ⩽ m

max
u⩽k

∑
o′∈O

∑
s, s′∈S

O(o′|s′, u)T (s′|s, u)b(s)ψ(o′, b′) otherwise. (2)

Here, b′(s′) = O(o′|s′,u)
∑

s∈S T (s′|s,u)b(s)∑
s′′∈S O(o′|s′′,u)

∑
s∈S T (s′′|s,u)b(s) is the updated belief at state s′.

This follows from a classical result of optimal control where the belief takes
into account all the past rounds to determine a probability distribution over the
future state [18,20]. However, it is hard to make out practical use of this form.

3.2 Simplification
Solving the Bellman equation requires to consider all histories to compute

an optimal response. However, the only source of randomness is ω. The only
ω-dependent component of the model is the observed bid δ(pt) = δ(ωt, pt) =∑(n−1)m

j=1 1{Zj(ω0) > pt}. Hence, we can "transpose" the randomness of the
environment to the opponent’s bid by seeing δ(pt) as a random process.

The following theorem embodies this simplification: under an assumption on
the demand function and knowing the initial belief b0, only the demand observed
at the last round matters to take an optimal decision.

Theorem 1. Let ∀t ⩾ 0,

φ(t, k, δ)=

v(k)− kpt−1 if k + δ ⩽ m

max
u⩽k

∑
δ′⩽δ

P(δ(pt) = δ′|δ(pt−1) = δ)φ
(
t+ 1, u, δ′

)
otherwise. (3)

Suppose that (δ(pt))t⩾0 is a Markov chain. Let b0 be the distribution of s0 =
(0, Pinit, k0, ω0) where ω0 is the nature’s choice (for the random sequence (Zj)0⩽j⩽m

or the process (δ(pt))t⩾0). Then the optimal value given by Equation (2) and φ
coincide at the initial time: Eδ−1 [ψ(o0 = (0, Pinit, k0, δ−1), b0)] = Eδ−1 [φ(0, k0, δ1)].

In other words, we can find an optimal solution avoiding the recourse to dynamic
programming in a belief space if the opponent’s demand is a Markov chain as it
is a sufficient statistics for the optimal value. This leads to a practical algorithm
to decide bids at each round. The first decision considers the distribution of
δ(Pinit) and must maximize the discounted utility. Then, if the auction is not
finished, it suffices to take the argmax at each round t in Equation (3).

4 Optimal bound
Theorem 1 provides a simple algorithm to play an auction optimally. In this

section, we quantify the value of this optimum. To this end, we took inspiration
from prophet inequalities and their definition of approximation [7]. We investi-
gate how much the algorithm’s expected utility differs from the utility of a player
with perfect information. We also introduce a stronger notion of approximation
which gives a more practical meaning to optimality.
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4.1 Exponential case
The exponential distribution is associated with life expectancy. In the context

of an auction, the demand is similar to the process of aging, as the auctioneer
"dies" when her bid reaches 0. Thus, it makes sense to model the time passing
between two changes in demand as exponential laws. For an opponent i:
– Let λ > 0 and Zopp,i

m+1 = 0

– ∀j ∈ {1, . . . ,m}, Zopp,i
j − Zopp,i

j+1 ∼ E(λ)
– (Zopp,i

j − Zopp,i
j+1 ) are iid.

Moreover, we suppose that for all i ̸= i′, (Zopp,i
j −Zopp,i

j+1 ) and (Zopp,i′
j −Zopp,i′

j+1 )
are independent for any j. We thus define n−1 opponent i ∈ {1, . . . , n−1} with
a demand function δi with independent increments. Hence, the sum remains a
Markov chain. This model allows us to apply the result of Theorem 1 and use
the underlying strategy. In this particular case, P(δi(pt+1) = δt+1|δi(pt) = δt)
can be explicitly computed and P(δ(pt+1) = δt+1|δ(pt) = δt) follows.

4.2 Empirical evidence of optimality
We simulate auctions and observe the performance of an agent playing ac-

cording to the strategy we have exhibited. Those performances can be compared
to an oracle (see the optimization problem 4) to give a sense of how close the
algorithm is to take the optimal decision.
Simulation setting We suppose the opponent and the player have the same
exponential parameter λ. Moreover, the player’s valuation is fixed at v(k) =

λ[k(m+1)− k(k+1)
2 ] whereas the opponents’ is randomly drawn. Let’s motivate

the player’s valuation. In an auction, every player would have a similar valuation
in a fair auction (otherwise players with widely lower valuation would not be able
to compete).We thus set this valuation to be the expectancy of a random SB-
opponent’s.
Among the simulations, ∆P the price increment, Pinit the initial price and m
the number of items are fixed. Each simulation is carried out as follows:
– We draw independently n−1 samples of length m: zopp,i

1 , . . . , zopp,i
m from ran-

dom variables (Zopp,i
j ) to form the demand of one opponent i. Then, we define

z1, . . . , z(n−1)m as a reordering of (zopp,1
1 , . . . , zopp,1

m , . . . , zopp,n−1
1 , . . . , zopp,n−1

m ).
It yields the opponent’s demand δ(p) =

∑(n−1)m
j=1 1{zj > p}.

– We then play the same auction (i.e. against the same opponent) using two
different strategies:
1. For the first strategy, we suppose the player has access to the oppo-

nent’s valuation. The player plays with perfect information and obtains
an optimal final score Vi, her utility at the end of the auction.

2. The second strategy is the policy derived from Equation (3). This results
in a final score ψi.

Approximations Usually (see [9,10]), an approximation is defined as follows.

Definition 3. For every strategy σ with imperfect information, let V (σ) be the
random variable giving the score such a strategy yields. We denote by V the
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score of the optimal strategy in a perfect information setting. σ is said to be an
α-approximation if and only if E[V (σ)] ⩾ αE[V ].

We extend this notion with the following definition.

Definition 4. With the foregoing notation, σ is said to be an α-strong approx-
imation with probability p if and only if P(V (σ) ⩾ αV ) ⩾ p.

Spectrum auctions are neither repeated nor scalable. Thus, it is more meaningful
for an agent to know that there is high chance to approximate the optimal value
rather than knowing that this value would be attained in expectancy.
Empirical results In order to choose the most realistic parameters, we consider
the same parameters as in the French 5G auction:m = 11, Pinit = 70 and∆P = 3
(see [1]). We have conducted N = 10.000 auctions for λ ∈ {10, 11, 12, 13, 14, 15}
in order to mimic different bidding profiles compatible with the 5G auction.
From those simulations, we can conjecture that approximation and strong ap-
proximation results can be derived on the Bellman strategy.

Table 1. Frequence of points (Vi, ψi) such
as ψi ⩾ 80%Vi

λ 10 11 12 13 14 15
Freq 90% 89% 91% 92% 90% 91%

Table 2. Empirical expectations

λ 10 11 12 13 14 15
E[V ] 50 59 66 72 78 83
E[ψ] 46 55 62 68 73 78

E[V ]/E[ψ] 91% 94% 94% 95% 94% 94%
Table 3. Estimation of P(V = ψ)

λ 10 11 12 13 14 15
P(V = ψ) 49% 54% 57% 61% 58% 58%

From those figures, we can conjecture that an approximation result can be
empirically observed and the value of α seems to be independent on λ. Such
empirical evidence suggests the existence of a constant approximation factor.
Plus, from a practical point of view, data show that the outcome of our strategy
rarely differs from the optimal outcome since, in at most ≃ 10% of auctions, the
obtained utility is lower than 80% of the best-possible utility. Furthermore, in
at least half of the sample, the strategy achieved the best possible utility.

5 Conclusion
We have modelled a real-life auction against a straightforward but realistic

strategy as a POMDP, obtained the optimal strategy, and compared the perfor-
mances of this strategy and of a perfectly informed one. Future work would focus
on having theoretical guarantees for this strategy in the same setting. Moreover,
one could study the scaling of this result in higher dimension auctions such as
the SAA (Simultaneous Ascending Auction) where players are allowed to bid on
multiple items rather than a number of items, raising their prices individually.
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